Phoenix Business Journal: ​Has the Arizona biotech community achieved critical mass?

pbj-phoenix-business-journal-logoThe Arizona BioTech industry has come a long way, but has it come far enough to be self sustaining?  In “Has the Arizona biotech community achieved critical mass?” I take a look at where we are and how close we are to this critical goal.

Posted in Publications | Tagged , , , | Leave a comment

An Eye for the Win! – Signal Integrity with ANSYS

DDRComparisonIn today’s world of high speed communication we are continuously pushing the envelope in data throughput and reliability – There are many challenges that restrict speedy progress: Time – Spinning multiple boards to find and fix problems costs valuable time and money; Cost – additional test procedures can significantly add to this cost; Scalability of Solutions – it’s fundamentally difficult to accurately predict what might happen solely through previous experiences; which is often why multiple spins are required.

ANSYS has the simulation platform that enable signal integrity engineers to predict and improve the performance of high speed communication channels before any board is prototyped – Imagine being able get the design right the first time by testing several design parameters such as different trace routing, power profiles and components.

This sounds like a great proposition but in actuality what do you get from doing that? The answer is a reduced design cost, detailed insight into the design and a reduced time to market. The only way to obtain this “full picture” is to understand the electrical, thermal and mechanical aspects of the design.

EyediagramEye Diagram of Data Signal Obtained in ANSYS

A critical characterization in high speed communication channel design is the Eye diagram. Extensive testing is done to obtain Eye diagrams for various signal nets across a PCB or Package – ANSYS can provide the Eye diagram so that engineers can address potential failures and weaknesses in their design before it is sent out for prototyping. Bathtub curves, effects of jitter and identifying crosstalk are equally important in the design of communication channels and all can be obtained and considered with ANSYS tools.

ANSYS supports IBIS-AMI modeling, SERDES design, TDR measurement and Statistical Eye analysis among much more. With chip, memory and board manufacturers all utilizing ANSYS products it is easy to incorporate and analyze real world product performance of the entire PCB.

TDRTDR Measurement Across Net

ANSYS allows all aspects of the design to be tested and optimized before prototyping. Apart from signal integrity ANSYS tools can also accurately model power integrity concerns such as decoupling capacitor optimization, thermal response and structural issues, as well as cooling solutions for chips, packages, PCBs and full electronic systems. With the ability to analyze and help optimize different design characteristics of a PCB, ANSYS can provide engineers with “the full picture” to help reduce cost and time to market, and to understand the design’s expected real world operation.

VoltageDropBoardWarpageElectronicsCooling

Top: Voltage Drop; Middle: PCB Warpage;
Bottom: Cooling Flow Through Enclosure

The “Eye” is only a phone call away.

Please give us a call at 1-800-293-PADT or reach out to me directly at manoj@padtinc.com for more information.

Posted in The Focus | Tagged , , , , , , | Leave a comment

AMUG 2016 Recap

AMUG LogoThis was my first year attending AMUG (Additive Manufactures User Group) and after attending RAPID last year in Long Beach, California, it exceeded my expectations.  Everyone I ran into last year at RAPID said that I HAD to attend AMUG since I am a user of both Stratasys Polyjet and FDM technologies.  Once I found out the dates I immediately asked my supervisor if I could attend this years AMUG that was held in good old St. Louis, Missouri!  I am so glad I was able to make it to AMUG.  Every day we had the decision to pick between 18 different presentations.  Not all of the presentations were repeated each day.  We had presentations from Universities, Aerospace, Defense, Medical, Manufactures of 3D printers and many more!  I needed a clone of myself because the decisions of choosing one presentation over another was way too difficult.  Luckily there were 5 representatives from PADT at this convention and we were able to share notes.

Stratasys J750

Stratasys unveiled a new 3D printer on the first day of AMUG and it is phenomenal! It is called the Stratasys J750.  The user has the ability to print with 6 different materials at the same time choosing between 360,000 different colors!  What other 3D printer is there that you can load Digital ABS, Tango (rubber), and different colors and build with them?  NONE!  Stratasys also revamped their print heads by doubling the amount of nozzles per material which results in better layer resolution!  All print modes have finer layers resulting in better aesthetics than any other printer previous with High Quality layers at 14 microns!  By teaming up with Adobe, the user can import a CAD file into Adobe Photoshop to assign a color pattern, picture, or even a texture to their CAD file.  To say I am excited about this printer is an understatement!  I need one now!Hean J750SSYS Display

STRATASYS WORKSHOPS:

Carbon fiber soluble core workshop

In this workshop we learned how to setup a soluble core, that was printed on a Stratasys Fortus 450 MC using the SR-30 support, for a carbon fiber application.  This is a great application for the soluble support material. Turns out there are many customers using this application so that they don’t have to inventory expensive tools and can print on demand cores for their customers.

Soulable Core 2Soluable Core 1

During this presentation we learned that you will need to sand the part and then apply some sealing agent to the core/mandrel.  As for what type of sealing agent works best?  The answer is all.  They haven’t had any issues with different sealing agents from different vendors.  Several coats are needed.  When the part is building, you have the ability to setup pauses in the build so that you can add inserts or bushings to the part.  Because Aluminum dissolves in Sodium Hydroxide, you will want to use a different metal.

If this is a application that you are interested in, please email me at James.barker@padtinc.com and I will respond ASAP to you inquiries.

Injection Mold 3D Printed Inserts 

This application is a huge money and time saver as well!  In this picture the inserts were 3D printed using a Digital ABS-Like material from a Polyjet printer.  The brackets and ejector plate were printed using the FDM technology and built out of Ultem 1010.    These builds took under 3 hours to build and allow the customer to quickly inject material to prove the design using the actual material required!  A few months ago we held a seminar in Utah at 2 different locations and taught this application with a Stratasys expert.  Here is a neat video Professor Jonathan George did showing this application in use: YouTube.

Here is a video that Stratasys put out that shows their printers in use and the whole process as well.  YouTube

IM Molds

ADDITIVE MANUFACTURING at GE AVIATION

LEAP Engine Fuel Nozzle

GE’s biggest success story is their LEAP Engine Fuel Nozzles.  For each LEAP engine manufactured there are 19 fuel nozzles needed.  Instead of assembling them by hand they are now all 3D printed.  10,000 engines have been sold to date since the engine was introduced in 2012.  By 2018, GE needs to 3D print 35,000 fuel nozzles and by 2020, they have estimated that they will need a total of 100,000 nozzles.  There is a 25% weight reduction and these parts are 5 times more durable than conventional manufacturing methods.

LEAP Enginh Fuel Nozzle

T25 Temperature Sensor

This housing is an inlet temperature sensor that was the 1st 3D printed part certified by the FAA to fly inside a GE commercial jet engine! GE Aviation is retrofitting 400 GE90-94B engines that power Boeing 777’s.  These sensors are subjected to all elements so there was rigorous testing done to ensure safety.

T25 Temp Sensor

The Center for Additive Technology Advancement CATA

This facility is already open and running.  The goal is to advance Additive Manufacturing across all divisions of GE.  More information can be found here.

CATA

  XJET – NEW METAL TECHNOLOGY

XJET LogoI have been operating 3D printers going on 7 years.  I am a huge fan of Stratasys/Objet 3D Printers so I made sure to attend the presentation by XJET.

AMUG was XJET’s unveiling of their new metal technology.  XJET was formed in 2005 by the inventors of Objet/Polyjet technology.  Since 2005 they have been able to raise $170 million to help spur their new idea.  They call it Nano Particle Jetting™.  The way it works is they take a nano particle of metal and suspend it in a liquid material that is then jetted from the print heads very similar to how Polyjet printers work.  Since the metal is infused in a liquid material there isn’t any harm dealing with powdered metals which eliminates the fear of dealing with a combustible powder metal!  The parts are built in a heated chamber which evaporates the liquid material that was holding the nano particle.  Another key part to their technology is the support material which is NOT the same material as the metal!  During the presentation, Dror Danai mentioned that there is no need to remove the support material with a mechanical process.  The parts will need to be annealed to remove stresses that occur during the printing process.  While the part is being annealed the support material will be removed.  I am not sure how this is done, but it was hinted that the support dissolves or evaporates away.

XJET Machine

The print heads have 512 nozzles on each of them that can jet 18,000 droplets per second which helps achieve a layer thickness as fine as 2 Microns!!  Currently XJET has 7 machines that they are operating.  6 are in R&D and 1 is being used to print benchmarks for customers to help prove the technology.  Here is a link to their website showing how their technology works: XJET

If you would like to see this printer in person you can at RAPID which is in Orlando, Florida from May 16-19.  Here is a link to RAPID.

CONCLUSION

SSYS Ice SculptureThere are many other presentations and workshops that aren’t covered in this synopsis.  I focused on things that really excited me about the future of where this technology is headed.  If XJET technology is scalable, it can be revolutionary.  GE continues to be at the forefront of this technology and is continually pushing the limits of Additive Manufacturing.  The workshops I attended were mainly Stratasys driven because I was curious how you can make end-use production parts with their 3D printers.  Also the unveiling of the Stratasys J750 helps confirm that innovation is still taking part by one of the leaders in Additive Manufacturing in showcasing their new 3D printer that can print with 6 different materials!

All in all I had a phenomenal time at AMUG and met some very interesting people that share my same passion for 3D printing.  If you have the opportunity to go to RAPID this  year in Florida, please let me know your thoughts of it.  I have heard there are some new materials coming out from Stratasys along with new 3D printers that will be showcased.  It is amazing where 3D printers have come from, and I am anxious to see where we are headed!

If you would like to contact me with any questions then please email me at this email address:

James.Barker@padtinc.comJames

James Barker, Application Engineer

Phoenix Analysis & Design Technologies

Posted in Additive Manufacturing, Events, News | Leave a comment

Phoenix Business Journal: ​6 things that make the Arizona technology startup community unique

pbj-phoenix-business-journal-logoIn those documentaries on the animals of the desert, at some point they always say something like “the harsh environment shapes desert dwellers into uniquely strong and beautiful creatures.” The same is true for our tech startups. “6 things that make the Arizona technology startup community unique” takes a look at this environment and what we need to do to take advantage of it.

Posted in Publications | Tagged , , , , | Leave a comment

Phoenix Business Journal: ​What is numerical simulation? And why should I care?

pbj-phoenix-business-journal-logoNumerical simulation has been the bulk of my career for 30 years now. I love simulation. It has had a huge positive impact on product development as well as many other industries.  In “What is numerical simulation? And why should I care?” I evangelize a bit about my professional passion.

Posted in Publications, The Focus | Tagged , , | Leave a comment

Phoenix Business Journal: ​Let’s focus on microelectronics for a bit

pbj-phoenix-business-journal-logoWhen you think about high-tech in Arizona, what comes to mind? We have it all here. However, the one tech industry that supports and enables many of the others is microelectronics. In “Let’s focus on microelectronics for a bit” we go over a few of the reasons why Microelectronics are so important to Arizona.

Posted in Publications | Tagged , , , , | Leave a comment

Technology Trends in Laser-based Metal Additive Manufacturing

amug-2

Figure 1. Concept Laser’s M2 Cusing at AMUG 2016

One of the more difficult things about being at the Additive Manufacturing Users Group (AMUG) is dealing with the fact that there is more to do than you can hope to accomplish in four and a half days. So I decided to focus on two themes: laser-based metal additive manufacturing (AM); and design & simulation for AM. In this post, I focus on the former and try to distill the trends I noticed across the laser-based metal AM system manufacturers that were present at the conference: Concept Laser, SLM, Renishaw, EOS and 3D Systems (listed here in the decreasing order of the time I spent at each supplier’s booth). While it is interesting to study how 5 different suppliers interpret the same technology and develop machines around it, it is not my objective to compare them here, but to extract common trends that most suppliers seem to be working on to push their machines to the next level. For the purposes of this post, I have picked the top-of-the-line machine that each supplier offers as an indication of the technology’s capabilities: they span a range of price points, so once again this is not meant to be a comparison.

As a point of observation, the 5 key trends I noticed turned out to be all really aspects of taking the technology from short run builds towards continuous production. This was not my intent, so I believe it is an accurate indication of what suppliers are prioritizing at this stage of the technology’s growth and see as providing key levers for differentiation.

1. Quality Monitoring

Most customers of AM machines that wish to use it for functional part production bemoan the lack of controls during manufacturing that allow them to assess the quality of a part and screen for excursionary behavior without requiring expensive post-processing inspection. Third party companies like Sigma Labs and  Stratonics have developed platform-independent solutions that can be integrated with most metal AM systems. Metal AM suppliers themselves have developed a range of in-situ monitors that were discussed in a few presentations during AMUG, and they generally fall into the following categories:

  • Input Monitors:
    • Laser: Sensors monitor laser powder as well as temperature across the different critical components in the system
    • Oxygen Level: Sensors in the build chamber as well as in sieving stations track O2 levels to ensure the flushing of air with inert Argon or Nitrogen has been effective and that there are no leaks in the system
  • Output Monitors:
    • Live video: simple but useful, this allows users to get a live video stream of the top layer as it is being built and can help detection of recoater blade damage and part interaction
    • Meltpool: Concept Laser showed how its Meltpool monitoring system can be used to develop 2D and 3D plots that can be superimposed with the 3D CAD file to identify problematic areas – the video is also on YouTube and embedded below. SLM and EOS offer similar meltpool monitoring solutions.
    • Coater consistency: Concept Laser also described a monitor that captures before and after pictures to assess the consistency of the coater thickness across the build area – and this information is fed forward to adjust subsequent coater thicknesses in an intelligent manner.

Quality monitoring systems are still in their infancy with regard to what is done with the information generated, either in terms of feed forward (active) process control or even having high confidence in using the data to validate part quality. A combination of supplier development and academic and industry R&D is ongoing to get us to the next level.

2. Powder Handling

In a previous post, I touched upon the fire and explosion risks posed by metal powder handling. To lower the bar for an operator to gain access to a metal AM machine, one of the considerations is operator safety and the associated training they would need. Suppliers are constantly trying to improve the methods by which they can minimize powder handling. For a mechanical engineer, it is intriguing to see how reactive metal powders can be moved around in inert atmospheres using different strategies. The SLM 500HL uses a screw system to move the powder around in narrow tubes that stick out of the machine and direct the material to a sieving station after which they are returned to the feed area. The Renishaw RenAM 500M on the other hand uses a pneumatically driven recirculation system powered by Argon gas that is well integrated into the machine frame. Concept Laser also offers automated powder handling on the XLine 2000R, while EOS and 3DSystems do not offer this at the moment. Figure 2 below does not do justice to the level of complexity and thought that needs to go into this.

Figure 2. Two different automated powder handling systems in use in metal AM machines

One of the limitations of automating powder handling is the ability to change materials, which is very hard to impossible to do with high enough confidence with these systems. As a result, their use is limited to cases where one machine can be dedicated to one material and efficiency gains of powder handling can be fully realized. The jury is still out on the long term performance of these systems, and I suspect this is one area that will continue to see improvements and refinements in subsequent model releases.

3. Multi-Laser Processing

In the quest for productivity improvement, one of the biggest gains comes from increasing the number and power of available lasers for manufacturing. In my previous experience with laser based systems (albeit not for this application), an additional laser can increase overall machine throughput by 50-80% (it does not double due to steps like the recoater blade movement that does not scale with the number of lasers).

The suppliers I visited at AMUG have very different approaches to this: SLM provides the widest range of customizable options for laser selection with their 500HL, which can accept either 2 or 4 lasers with power selection choices of 400W or 1000W (the 4 laser option was on display, YouTube video from the same machine in action is below) – the lasers of different powers can also be combined to have two 400W and two 1000W lasers. Concept Laser’s XLine 2000R allows for either 1 or 2 1000W lasers and their smaller, M2 machine that was showcased at AMUG has options for 1 or 2 lasers, with power selection of 200W or 400W. EOS, Renishaw and 3D Systems presently offer only single laser solutions: the EOS M 400 has one 1000W laser, Renishaw’s RenAM 500M has one 500W laser and the ProX DMP 320 from 3D Systems has one 500W laser.

There are a few considerations to be aware of when assessing a multi-laser machine: Each laser drives an increase in machine capital cost. But there is another point of note to remember when using multi-laser systems for manufacturing that centers around matching process outputs from different lasers: laser-to-laser variation can be a dominant source of overall process variation and can drive a need to calibrate, maintain and control both lasers as if they were independent machine systems. Additionally, development of  a process on one particular laser power (100W, 400W, 500W, 1000W) may not scale easily to another and is something to remember when developing a long term strategy for metal AM that involves different kinds of machines, even if from the same supplier.

4. Software Integration

Renishaw spent a significant amount of time talking about their easy-to-use QuantAM software which is designed to integrate Renishaw process parameters and part processing information more tightly and allow for seamless process parameter development without needing third part software like Magics. Additive Industries announced in their presentation at AMUG that they had just signed an agreement with 3DSIM to integrate their support design software solution into their MetalFab1 machine. Software integration is likely to be an increasing trend especially around the following areas:

  • Improving support design methods and reducing its empirical nature and reducing the material, build time and support removal costs associated with them as well as eliminating the need for iterative builds
  • Increasing process options available to the user (for example for the outer skin vs the inner core, or for thick vs thin walls)
  • Simplifying the development of optimized process parameters for the user working on new materials
  • Integrating design and process optimization to increase effective part performance

In a future blog post, I will look specifically at the many design and simulation tools available around AM and how they are connected today even if not well-synergized.

5. Modular System Architectures

In a list of mostly evolutionary changes, this is the one area that struck me as being a step-change in how this technology will make an impact, even if it will be felt only by larger scale manufacturers. Concept Laser and Additive Industries are two companies that delivered presentations discussing how they were approaching the challenge of revolutionizing the technology for true production and minimizing the need for human touch. Common to both is the notion of modularity, allowing for stacking of printing, powder removal, heat treating and other stations. While Additive Industries are developing a flow resembling a series production line, Concept Laser have taken the more radical approach of having autonomous vehicles delivering the powder bed to the different stations, with travel channels for the vehicles, for the operator and for maintenance access (Figure 3). Both companies expect to have solutions out by the end of this year.

Figure 3. Concept Laser’s “Factory of Tomorrow” features swim-lanes for operators and for autonomous vehicles that will deliver powder and parts from one module to another

Concluding Thoughts

It is an interesting time to be a manufacturer of laser-based metal 3D printers, and an even more interesting time to be a consumer of this technology. The laser-material interaction fundamentals of the process are now fairly well-established. Competitors abound both in existing and emerging markets with machines that share many of the same capabilities. Alternative technologies (E-Beam melting, deposition and jetting) are making strides and may start to play in some applications currently dominated by laser-based technologies. A post early-adopter chasm may be around the corner. This will continuously drive the intense need to innovate and differentiate, and possibly also lead to a merger or two. And while most of the news coming out of conferences is justifiably centered around new process technologies (as was the case with Carbon’s CLIP and XJET’s metal nanoparticle jetting at AMUG this year), I think there is an interesting story developing in laser-based powder bed fusion and can’t wait to see what AMUG 2017 looks like!

Posted in Additive Manufacturing | Tagged , , , , , , , | Leave a comment

Phoenix Business Journal: Why you should learn to shut up and listen

pbj-phoenix-business-journal-logoShut up and listen. Easy to say, hard to do. every day in a ton of different ways, we are asked to listen to what other people are saying, and the reality is that not a lot of us do.  In this post, “Why you should learn to shut up and listen” I go over why the problem causes real issues in business, and some suggestions on being a better listener.

Posted in Publications | Tagged , , , , | Leave a comment

Helpful New Meshing Feature in ANSYS Mechanical 17.0 – Nonlinear Mechanical Shape Checking

ansys=new-mesh-r17Meshing for Nonlinear Structural Problems

Overcoming convergence difficulties in nonlinear structural problems can be a challenge. I’ve written a couple of times previously about tools that can help us overcome those difficulties:

I’m pleased to announce a new tool in the ANSYS Mechanical tool belt in version 17.0.
With version 17.0 of ANSYS we get a new meshing option for structural simulations: Nonlinear Mechanical Shape Checking. This option has been added to the previously available Standard Mechanical Shape Checking and Aggressive Mechanical Shape Checking. For a nonlinear solution in which elements can become significantly distorted, if we start with better-shaped elements they can undergo larger deformations without encountering errors in element formulation we may encounter fewer difficulties as the nodes deflect and the elements become distorted. The nonlinear mechanical setting is more restrictive on the element shapes than the other two settings.

We’ve been recommending the aggressive mechanical setting for nonlinear solutions for quite a while. The new nonlinear mechanical setting is looking even better. Anecdotally, I have one highly nonlinear customer model that reached 95% of the applied load before a convergence failure in version 16.2. That was with the aggressive mechanical shape checking. With 17.0, it reached 99% simply by remeshing with the same aggressive setting and solving. That tells you that work has been going on under the hood with the ANSYS meshing and nonlinear technology. By switching to the new nonlinear mechanical shape checking and solving again, the solution now converges for the full 100% of the applied load.
Here are some statistics using just one measure of the ‘goodness’ of our mesh, element quality. You can read about the definition of element quality in the ANSYS Help, but in summary better shaped elements have a quality value close to 1.0, while poorly shaped elements have a value closer to zero. The following stats are for tetrahedral meshes of a simple turbomachinery blade/rotor sector model (this is not a real part, just something made up) comparing two of the options for element shape checking. The table shows that the new nonlinear mechanical setting produces significantly fewer elements with a quality value of 0.5 or less. Keep in mind this is just one way to look at element quality – other methods or a different cutoff might put things in a somewhat different perspective. However, we can conclude that the Nonlinear Mechanical setting is giving us fewer ‘lower quality’ elements in this case.

Shape Checking Setting Total Elements Elements w/Quality <0.5 % of elements w/Quality <0.5
Aggressive Mechanical 31683 1831 5.8
Nonlinear Mechanical 31865 1249 3.9

Here are images of a portion of the two meshes mentioned above. This is the mesh with the Aggressive Mechanical Shape Checking option set:ansys-new-meshing-17-01
The eyeball test on these two meshes confirms fewer elements at the lower quality contour levels.

And this is the mesh with the Nonlinear Mechanical Shape Checking option set:

ansys-new-meshing-17-02

So, if you are running nonlinear structural models, we urge you to test out the new Nonlinear Mechanical mesh setting. Since it is more restrictive on element shapes, you may see longer meshing times or encounter some difficulties in meshing complex geometry. You may see a benefit in easier to converge nonlinear solutions, however. Give it a try!

Posted in The Focus | Tagged , , , , | Leave a comment

Press Release: 3D Printing Expertise from PADT Advances Aerospace Industry

ula-rocket-duct-made-from-3d-printed-partsMany of you may have seen the recent launch of an Atlas V rocket from United Launch Alliance (ULA).  We are honored to have lent our expertise to ULA’s 3D Printing efforts that resulted in the use of parts on that rocket made with additive manufacturing.   We will be talking about that and other ways we help the Aerospace Industry at the 32nd Space Symposium this week in Colorado Springs Colorado.  Please stop by!

Read more in the press release.  A PDF can be found here.

Press Release:

3D Printing Expertise from PADT Advances Aerospace Industry

Product design and development leader provides additive manufacturing support for United Launch Alliance Atlas V rocket

COLORADO SPRINGS, Colo.April 11, 2016PRLog — Phoenix Analysis & Design Technologies Inc. (PADT), the Southwest’s largest provider of Numerical Simulation, Product Development, and 3D Printing services and products, is highlighting its expertise this week at the 32nd Space Symposium,  the premier global, commercial, civil, military and emergent space conference.

During the symposium, PADT experts in additive manufacturing will be on hand to discuss the company’s technical expertise, logistics, sales and service capabilities in the exciting aerospace sector, which contributed to the successful launch on March 22 of a United Launch Alliance (ULA) Atlas V rocket. The Atlas V rocket made use of lightweight thermoplastic 3D printed parts, with the application of Stratasys technology supplied by PADT and consulting from PADT on how best to apply that technology to engineering, tooling, and production.

Stop by and visit PADT’s booth 1310 at the 32nd Space Symposium, April 11-14, in Colorado Springs, Colorado. http://www.spacesymposium.org/.

“PADT continues to be both a great supplier of both polymer and metal additive manufacturing technologies and an additive manufacturing technical consultant to ULA, supporting our Atlas V, Delta IV and future Vulcan Centaur launch vehicles,” said Greg Arend, ULA manager, Additive Manufacturing. “By consulting with PADT, we were able to understand how these technologies enhance our design and manufacturing process, saving time, money and weight. PADT’s knowledge of the use of both polymer and metal materials was instrumental in helping us achieve our success.”

In addition to supplying ULA with Stratasys’ polymer 3D Printing machines, PADT consulted with them early on andled a tour of Oakridge National Labs to help them understand the state of the art for both metal and polymer applications and produced a technological roadmap for both technologies that has largely been followed.  Assisted by PADT, both companies made use of additive manufacturing for engineering prototypes, then advanced to the production of tooling for manufacturing and developed the confidence needed to move to flight hardware.

The founders of PADT have been involved with additive manufacturing since the late 1980’s and the company was the first service provider in the Southwest in 1994.  Over the years, PADT has built a reputation for technical excellence and a deep understanding of how to apply various 3D printing technologies to enable real world applications.  Their sales team has shown the ability to sell sophisticated engineering products to companies large and small, and to provide excellent support to their customers.

“3D Printing is not just about makers, nor is it just about engineering prototypes,” said Rey Chu, co-owner, principal and director of Manufacturing Technologies at PADT. “Every day users are creating production hardware to produce usable parts that save them time and money. Ducts for rockets are a perfect application of 3D printed parts because they are complex, low volume, and can make single parts that need to be made in multiple pieces using traditional methods.”

About Phoenix Analysis and Design Technologies

Phoenix Analysis and Design Technologies, Inc. (PADT) is an engineering product and services company that focuses on helping customers who develop physical products by providing Numerical Simulation, Product Development, and Rapid Prototyping solutions. PADT’s worldwide reputation for technical excellence and experienced staff is based on its proven record of building long term win-win partnerships with vendors and customers. Since its establishment in 1994, companies have relied on PADT because “We Make Innovation Work.” With over 80 employees, PADT services customers from its headquarters at the Arizona State University Research Park in Tempe, Arizona, and from offices in Torrance, California, Littleton, Colorado, Albuquerque, New Mexico, and Murray, Utah, as well as through staff members located around the country. More information on PADT can be found at http://www.PADTINC.com

— End —

 

Posted in Additive Manufacturing, News | Tagged , , , , , | Leave a comment

Phoenix Business Journal: ​So, you have an idea for a product, what next?

pbj-phoenix-business-journal-logoGetting a product from idea to the market is a lot of work. Much effort and attention is focused on figuring out the idea, but the part after that is usually portrayed as some romantic quest involving coffee, colocation spaces, and long hours.  In this article,​ “So, you have an idea for a product, what next?” we offer up some practical advice on the steps you need to take to get going.

Posted in Product Development, Publications | Tagged , , , , | Leave a comment

Driving the Design of Small Modular Nuclear Reactors with Flownex

Flownex-Logo-2015-250wThe development of small modular nuclear reactors, or SMR’s, is a complex task that involves balancing the thermodynamic performance of the entire system. Flownex is the ideal tool for modeling  pressure drop [flow] and heat transfer [temperature] for the connected components of a complete system in steady state and transient, sizing and optimizing pumps or compressors, pipes, valves, tanks, and heat exchangers.

To highlight this power and capability,  PADT and Flownex will be exhibiting at the 2016 SMR conference in Atlanta where we will be available to discuss exciting new Flownex developments in system and subsystem simulations of SMRs.  If you are attending this year’s event, please stop by the Flownex booth and say hello to experts from M-Tech and PADT.

If you are not able to make the conference or if you want to know more now, you can view more information from the new Flownex SMR brochure or this video:

Why is Flownex a Great Tool for SMR Design and Simulation?

These developments offer greatly reduced times for performing typical design tasks required for Small Modular Nuclear Reactor (SMR) projects including sizing of major components, calculating overall plant efficiency, and design for controllability

This task involves typical components like the reactor primary loop, intermediate loops, heat exchangers or steam generators and the power generation cycle. Flownex provides for various reactor fuel geometries, various reactor coolant types and various types of power cycles.

Flownex can also be used for determining plant control philosophy. By using a plant simulation model, users can determine the transient response of sensed parameters to changes in input parameters and based on that, set up appropriate pairings for control loops.

For passive safety system design Flownex can be used to optimize the natural circulation loops.  The program can calculate the dynamic plant-wide temperatures and pressures in response to various accident scenarios, taking into account decay heat generation, multiple natural circulation loops, transient energy storage and rejection to ambient conditions.

flownex-smr-model-1

Learn more at www.padtinc.com/flownex, give us a call at 480.813.4884 or email brian.duncan@padtinc.com.

 

Posted in The Focus | Tagged , , , , | Leave a comment

PADT Events – April 2016

This is the first of what we hope to be a monthly posting here on our blog, reviewing PADT events happening in the next 5 or 6 weeks and reviewing activities over the previous month.


Upcoming Events, Seminars, and Gatherings

amug_logo_lgApril 5-7: AMUG Annual Meeting
St. Luis, MO

This annual meeting of the Additive Manufacturing Users Group has been a long time favorite of PADT.  Everyone involved in making and running industrial 3D Printers will be in St. Luis this year.  PADT’s Dhruv Bhate will be given two presentations and we will be hanging out in the exhibit hall. Look for anyone in a PADT shirt and say hi!


 

April 7: Seminar: Additive Manufacturing and the Navy SBIR Program With RevAZ/AZ Commerce
PADT Tempe, AZ

Learn more about the Navy Sea SBIR Program from Jonathan Leggett, the NAVSEA SBIR Program Manager, about how AZ Manufacturers can use SBIR Grants to assist in funding R&D early stage innovation. Jonathan will also review the Navy’s roadmap on additive manufacturing and 3D printing.


 

32nd_space_symposium_logo2April 11-14: Space Symposium
Colorado Springs, CO

This premier event for the entire Space industry is a favorite of PADT’s  We will be there in force in our own both, and with Stratasys, talking about how Additive Manufacturing is changing many aspects of space hardware. Look for Mario, Norm, Anthony, James, and Renee.  We expect to catch up with our customers and if we don’t know you, stop by and introduce yourself.


AZTC-logoApril 13, 11:30 – 1:00: AZTC Lunch-n-Learn
Innovation is easier said than done: Why skipping product simulation is no longer an option
Tucson, AZ

PADT will be presenting results from a recently released study on how the use of simulation has a significant and measurable impact on top line revenue for companies who make products. Lunch is included in this free event. Come back for a link in a day or so.


smr-2016April 14-15: International SMR and
Advanced Reactor Summit
Atlanta, GA

Flownex and PADT will be attending this meeting, the premier event for Small Modular and Advanced Reactor design.  Flownex is the leading tool for modeling fluid flow in and around reactors of all types, and is helping to drive the development of this new generation of nuclear power.  Look for us in the Flownex booth.


iPantherPrideLogoApril 18: “Thoughts on Being an Engineer”
a Presentation at Peoria High School
Peoria, AZ

PADT’s Dhruv Bhate will be discussing his career as an Engineer with High School students. He will also share with them his latest career change in to the exciting world of 3D Printing.


 

azbio-logo-1April 21: AZBio Expo 2016
Phoenix, AZ

PADT will be attending this key Bioscience industry event with a booth and by attending sessions.  Stop by and learn the latest about how PADT helps medical device companies make their innovation work. We will of course be talking about 3D Printing and simulation as well.


imi11May 12, 2016: Design for 3D Printing
Talk at Digital Manufacturing 2016 Conference
Scottsdale, AZ

This conference is focused on 3D Printing and Additive Manufacturing with a focus on inkjet technologies.  PADT’s Eric Miller will be sharing his thoughts on design considerations for those who wish to use 3D Printing to manufacture their parts.


rapid-logo-100May 16-19: RAPID Show
Orlando, FL

The other big Additive Manufacturing show in the US is Rapid, held in Orlando, FL this year. PADT will be presenting at least one, and perhaps two times at this event. We will also be hanging out with Stratasys and other partners in the exhibit area.


March Events in Review

March was a busy month for events, with a couple of special opportunities to reach new audiences and learn more.

padt-additive-mfg-aztc-aerospace2016We started with the 2016 Aerospace, Defence, and Manufacturing Conference put on by the Arizona Technology Council on March 3rd.  Dhruv Bhate gave a talk about Additive Manufacturing in the state and made a call to action for more cooperation.  Our booth was well attended.


ati-logo-1The quarterly meeting of the Arizona Technology Investor group was March 10th.  We had four outstanding presentations from credible companies looking for angel investing.


padt-semi-breakfast-march-2016March 23rd was a busy day, with the SEMI Arizona presentation of the GPEC study: “Microelectronics: An Economic Pillar for Arizona” at breakfast.  We learned a ton about the importance of this sector to the state and where it is headed. This was followed by a sad event, a going away party for Jeff Saville as he departs CEI and spends some time in industry.


Sampe-2016-2Meanwhile, up in Utah, our team was at the Wasatch Front Materials Expo. This event has always been well attended and a chance for us to meet with existing customers and get in front of others who are interested in ANSYS and Stratasys.


chandler-innovationsThe next night saw a well attended event at The Perch in Chandler for the Chandler Innovations Connector.  The east valley tech startup community is booming and we were able to visit with many entrepreneurs and mentors.


flinn-foundation-logoOn March 29th PADT’s Eric Miller was invited to be on a panel to discuss innovation in the Bioscience industry in Arizona. The event focused on an update for the Flinn Foundation’s Bioscience Roadmap project. What an amazing panel and it was good to see the progress, and work still to be done, to build more momentum around this critical industry.


PADT-hillafb-2016Three events in support of government R&D finished up the last week of the month.  The Utah crew attended the Hill Air Force Base Technology Expo on March 30th, an annual event where vendors can share how they help the research going on at the base.


padt-optimization-seminarMeanwhile, we were holding a seminar at Los Alamos National Labs on Optimization with ANSYS products and how it can drive the use of Additive Manufacturing. That same presentation was repeated at Sandia National Labs on the 31st.


nmtc-new-mexico-tech-council-1The final event of the month was a fantastic presentation on Infrared sensors in Albuquerque, NM.  This was the first event that we have attended put on by the New Mexico Technology Council, or NMTC.  Made some great connection and we are looking forward to more interaction with them.


Posted in Events, News | Tagged | Leave a comment

New Tricks for an Old Dog: Eric Learns ANSYS SpaceClaim – Post 3

Adding Complexity and Moving

ANSYS-SpaceClaim-Learning-00-00
This post is the third in a series on learning ANSYS SpaceClaim. After over 31 years of CAD use, it has become difficult for me to learn new tools. In this series I will share my experience as I explore and learn how to use this fantastic tool.
If you have not read the previous post, start here.  A table of contents is here.

After playing with that block it seems like it may be time to try a more complex geometry.  For business banking, I’ve got this key fob that generates a number every thirty seconds that I use for security when I log in.  Might as well sort of model that.

keyfob

So the first thing I do is start up a new model and orient myself on to the sketch plane:

ANSYS-SpaceClaim-Learning-03-01

Then I use the line and arc tools to create the basic shape. Play around a bit. I found that a lot of things I had to constrain in other packages are just assumed when you define the geometry.  A nice thing is that as you create geometry, it locks to the grid and to other geometry. ANSYS-SpaceClaim-Learning-03-02

I dragged around and typed in values for dimensions to get the shape I wanted. As I was doing it I realized I was in metric. I’m old, I don’t do metric. So I went in to File and selected SpaceClaim options from the bottom of the window.  I used the Units screen to set things to Imperial.

ANSYS-SpaceClaim-Learning-03-03

This is the shape I ended up with:

ANSYS-SpaceClaim-Learning-03-04

I took this and pulled it up and added a couple of radii:

ANSYS-SpaceClaim-Learning-03-05

But if I look at the real object, the flat end needs to be round.  In another tool, I’d go back to the sketch, modify that line to be an arc, and regen.  Well in SpaceClaim you don’t have the sketch, it is gone.    Ahhh. Panic. I’ve been doing it that way for 25 some years.  OK. Deep breath, just sketch the geometry I need. Click on the three point arc tool, drag over the surface, then click on the first corner, the second, and a third point to define the arc:

ANSYS-SpaceClaim-Learning-03-06

Then us pull to drag it down, using the Up to icon to lock it to the bottom of the object.

ANSYS-SpaceClaim-Learning-03-07

Then I clicked on the edges and pulled some rounds on there:

ANSYS-SpaceClaim-Learning-03-08

OK, so the next step in SolidEdge would be to do a thin wall.  I don’t see a thin wall right off the top, but shell looks like what I want, under the Create group on the Design tab.  So I spinned my model around, clicked on the bottom surface I want to have open and I have a shell.  A thickness of 0.035″ looks good:

ANSYS-SpaceClaim-Learning-03-09

My next feature will be the cutout for the view window.   What I have not figured out yet is how to lock an object to be symmetrical. Here is why. I sketch my cutout as such, not really paying attention to where it is located.  Now I want to move it so that it is centred on the circle.

ANSYS-SpaceClaim-Learning-03-10

Instead of specifying constraints, you move the rectangle to be centered.  To do that I drag to select the rectangle then click Move. By default it puts the nice Move tool in the middle of the geometry.  If I drag on the X direction (Red) you can see it shows the distance from my start.

ANSYS-SpaceClaim-Learning-03-11

So I have a couple of options, to center it. The easiest is to use Up To and click the X axis for the model and it will snap right there.  The key thing I learned was I had to select the red move arrow or it would also center horizontally where I clicked.

If I want to specify how far away the edge is from the center of the circle, the way I did it is kind of cool.  I selected my rectangle, then clicked move. Then I clicked on the yellow move ball followed by a click on the left line, this snapped the move tool to that line. Next I clicked the little dimension Icon to get a ruller, and a small yellow ball showed up. I clicked on this and dragged it to the center of my circle, now I had a dimension from the circle specified that I could type in.ANSYS-SpaceClaim-Learning-03-13

After playing around a bit, if found a second, maybe more general way to do this.  I clicked on the line I want to position.  One of the icons over on the left of my screen is the Move Dimension Base Point icon. If you click on that you get another one of those small yellow balls you can move. I dragged it over to the center of the circle and clicked. then I can specify the distance as 0.75″

ANSYS-SpaceClaim-Learning-03-14

I’ve got the shape I want, so I pull, using the minus icon to subtract, and I get my cutout:

ANSYS-SpaceClaim-Learning-03-15

If you look closely,you will notice I put rounds on the corners of the cutout as well, I used Pull again.

The last thing I want to do is create the cutout for where the bank logo goes. It is a concentric circle with an arc on the right side.  Saddly, this is the most complex thing I’ve ever sketched in SpaceClaim so I was a bit afraid. It was actually easy.  I made a circle, clicking on the center of the outside arc to make them concentric. The diameter was 1″. Then I made another circle of 2″ centered on the right.  To get the shape I wanted, I used the Trim Away command and clicked on the curves I don’t want. The final image is my cutout.

ANSYS-SpaceClaim-Learning-03-16

Now I can do the same thing, subtract it out, put in some rounds, and whalla:

untitled.3

Oh, and I used the built in rendering tool to quickly make this image. I’ll have to dedicate a whole posting to that.

But now that I have my part, it is time to play with move in 3D.

Moving in 3D

Tyler, who is one of our in-house SpaceClaim experts (and younger) pointed out that I need to start thinking about editing the 3D geometry instead of being obsessed with controlling my sketches. So here goes.

If I wanted to change the size of the rectangular cutout in a traditional CAD tool, I’d go edit the sketch. There is no sketch to edit! Fear. Unknown. Change.

So the first thing I’ll do is just move it around. Grab one of the faces and see happens.

ANSYS-SpaceClaim-Learning-03-17

It moves back and forth, pretty simple.  The same tools for specifying the start and stop points are available. Now, if I ctrl-click on all four surfaces the whole thing moves. That is pretty cool.

ANSYS-SpaceClaim-Learning-03-18

Note: I’m using the undo all the time to go back to my un-moved geometry.

Another Note:  As you select faces, you have to spin the model around a lot. I use the middle mouse button to do this rather than clicking on the spin Icon and then having to unclick it.

Play with it some more. I was able to put draft by using the arcs on the Move gizmo, and if you pull far enough it adds material.ANSYS-SpaceClaim-Learning-03-19

That is enough for this post. More soon.

 

 

 

Posted in The Focus | Tagged , , , , , , , | Leave a comment

New Tricks for an Old Dog: Eric Learns ANSYS SpaceClaim – Post 2

Learning More About Pulling

ANSYS-SpaceClaim-Learning-00-00
This post is the second in a series on learning ANSYS SpaceClaim. After over 31 years of CAD use, it has become difficult for me to learn new tools. In this series I will share my experience as I explore and learn how to use this fantastic tool.
If you have not read the previous post, start here.  A table of contents is here.

As I explored ANSYS SpaceClaim in my first try, it became obvious that a lot of capabilities that are in multiple operations in most CAD systems, are all combined in Pull for SpaceClaim.  In this posting I feel like it would be a really good idea for me to really understand all the things Pull can do.

Start with the Manual

Not very exciting or adventurous. But there is so much in this operation that I feel like I will miss something critical if I don’t read up first.   It states:

“Use the Pull tool to offset, extrude, revolve, sweep, and draft faces; use it to round, chamfer, extrude, copy, or pivot edges. You can also drag a point with the Pull tool to draw a line on a sketch plane.”

Let’s think about that for a second.  What it is basically saying is if I pull on an object of a given dimension, it creates an object that is one higher dimension. Point pulls to a curve, a curve pulls to a face, and a face pulls to a solid. Kind of cool. The big surprise for me is that there is no round or fillet command. To make a round you pull on an edge. This is change.

Pull some Stuff

I started by reading my block with a hole back in.

ANSYS-SpaceClaim-Learning-02-01

This fillet pull thing scares me so I thought I’d confront it first. So selecte Pull, and selected an edge:

ANSYS-SpaceClaim-Learning-02-02

Then I dragged it away from the block. Nothing. You can’t create a surface that way. Then I dragged in towards the center. A round was created.

ANSYS-SpaceClaim-Learning-02-03

If anything, too simple. Back in my day, adding a round to an edge took skill and experience!

So next I think I want to try and change the size of something. Maybe the diameter of the hole. So I select the cylinder’s face. Is shows the current radius. I could just change that value:

ANSYS-SpaceClaim-Learning-02-04

Instead I drag, and while I do that I noticed that there are two numbers, the current radius and the change to the radius!  Kind of cool. No, really useful.

ANSYS-SpaceClaim-Learning-02-05

You use tab to go between them. So I hit tab once, typed 3 then tab again (or return) and I get a 8 mm diameter.  I like the visual feedback as well as the ability to enter a specific change number.

Next thing that I felt like doing was rounding a corner. Put a 5mm round on the corner facing out:

ANSYS-SpaceClaim-Learning-02-07

So I grabbed the point and dragged, and got a line.

ANSYS-SpaceClaim-Learning-02-07a

 

Remember, it only goes up one entity type – point to curve. Not point to surface. So I ctrl-clicked (that is how you select multiple entities) on the three curves that intersect at the corner:

ANSYS-SpaceClaim-Learning-02-08

Then I dragged and got my round.

ANSYS-SpaceClaim-Learning-02-09

Pulling Along or Around Something

This are all sort of dragging straight. After looking at the manual text it seems I can revolve and sweep as well with the Pull operation.  Cool. But what do I revolve or sweep around and along?  Looking at the manual (and it turns out the prompt on the screen) I use Alt-Clicking to define these control curves.  Let’s try it out by revolving something about that line I mistakenly made.

I click on one of the curves on the round. then Alt-Click the line – It turns blue. So there is a nice visual clue that it is different than the source curve.  Now I’ve also got spinny icons around the curve rather than pull icons.

ANSYS-SpaceClaim-Learning-02-10

So I drag and… funky revolved surface shows up. I had to spin the model to see it clearly:

ANSYS-SpaceClaim-Learning-02-11

Let me stop and share something special about this. In most other CAD tools, this would have involved multiple clicks, maybe even multiple windows. In SpaceClaim, it was Click, Alt-Click, Drag.  Nice.

Using the Pop=up Icons

As you play with the model you may start seeing some popup icons near the mouse when you select geometry while using pull. The compound round on the block is complicated, so I spun it around and grabbed just one edge and pulled it in to be a round.  Then I clicked on it and got this:

ANSYS-SpaceClaim-Learning-02-12

Not only can I put a value in there, I can drop ones I use a lot. I can also change my round to a chamfer, or I can change it to a variable radius. This is worth noting. In most other CAD tools you pick what type of thing you want to do to the edge. Here we start by dragging a round, then specify if it is a chamfer or a variable.

The variable radius is worth digging more in to.  I clicked on it and it was not intuitive as to what I should do. Let’s try help. Search on Variable Radius… duh. Click on the arrow that shows up and drag that. There are three arrows. The one in the middle scales both ends the same, the one on either end, well it sets the radius for either end.

ANSYS-SpaceClaim-Learning-02-13Reading more I see if I hold down the CTRL key and click on the arrow, I can drag a new control point along the edge. I can type in a percentage as well.  Very useful.

ANSYS-SpaceClaim-Learning-02-14

Clicking on a control point and hitting delete, gets rid of them.

That’s just one icon that pops up.  Playing some more it seems the other icons control how it handles corners and multiple fillets merging… something to look at as I do more complex parts.

The other popup I want to look at is the Up To one.  It looks like an arrow on a surface.  In other tools I extrude, cut, revolve all the time to some other piece of geometry.  This is the way to do it in Space Claim.  Let’s say I want to pull a feature to the middle of my hole. First I sketch the outline on a face:ANSYS-SpaceClaim-Learning-02-15

Then I select the outline, and get a popup. First thing I want to do is click on the + sign, because I want to add, not cut, then I click on the Up To and then select the axis of the hole:  ANSYS-SpaceClaim-Learning-02-16

That is enough for pulling and for today.  In the next session it may be time to explore the Move command.

 

 

 

 

 

 

 

 

 

Posted in The Focus | Tagged , , , , , , , | Comments Off on New Tricks for an Old Dog: Eric Learns ANSYS SpaceClaim – Post 2