Phoenix Business Journal: ​The five C’s of effective social network marketing

pbj-phoenix-business-journal-logoAs engineers, we struggle with using social networks to market our company. Engineers are not as in to social networking and they are adverse to anything that looks like a sale.  “The five C’s of effective social network marketing” goes over some of the things that have worked for PADT and should help similar tech companies get greater value – Clear Messaging, Consistency, Content, Conciseness, and Cross Platform.

Posted in Publications | Tagged , , , | Leave a comment

Phoenix Business Journal: How to assemble the right product development team

pbj-phoenix-business-journal-logoHaving the right product development team is critical to the successful development of a new product.  In “How to assemble the right product development team” I take a look at what PADT has learned through the years about what makes a great team.

Posted in Product Development, Publications | Tagged , , , | Leave a comment

Full Color 3D Printer Road Show: First Stop a Success Including Radio Broadcast

ICOSA_07169Denver was the first stop on a trip around the Southwest for Stratasys’ new J750 Full Color 3D Printer.  We are showing this machine that is reinventing 3D printing off in person so people can see the device up close and hold the incredible parts it makes in their hands.

You can still sign up for the Salt Lake City or Phoenix events.

ICOSA_70965The Denver event was hosted by St. Patrick’s Brewery in Littleton, right down the street from PADT’s Colorado Office. Several customers and PADT employees gave talks on how to better use 3D Printing, including a presentation from Mario Vargas on the new Stratasys J750.

On top of all of that, local radio station KDMT, Denver’s Money Talk 1690, did a live broadcast from the event.  You can listen in here. Again, PADT employees and customers talked about 3D Printing as well as the new Stratasys J750.

ICOSA_30368

Posted in Additive Manufacturing, Events | Tagged , , , , , , , | Leave a comment

Press Release: Innovative Additive Manufacturing Research Project Led by PADT Approved as Part of America Makes Multi-Million Dollar Grants

America-Makes-Logo-2We are pleased to announce that PADT has been awarded a grant from America Makes to further our research into combining our three favorite things:  Simulation, 3D Printing, and Product Development.  We will work with our partners at ASU, Honeywell Aerospace, and LAI International to study lattice structures created in 3D Printing, how to model them in ANSYS simulation software, and then how to use that information to drive product design.

A copy of the press release is below. Or read the official press release or download a PDF .

Press Release:

Innovative Additive Manufacturing Research Project Led by PADT Approved as Part of America Makes Multi-Million Dollar Grants

Arizona State University, Honeywell Aerospace and LAI International join PADT in technical research and educational outreach in 3D Printing

TEMPE, Ariz., July 25, 2016 — In one of the most critically needed areas of research in Additive Manufacturing, Phoenix Analysis & Design Technologies (PADT), the Southwest’s largest provider of numerical simulation, product development and 3D Printing services and products, today announced its project proposal titled “A Non-Empirical Predictive Model for Additively Manufactured Lattice Structures,” has been accepted as part of a multi-million dollar grant from the National Additive Manufacturing Innovation Institute, America Makes. PADT’s proposal was one of only seven selected, and one of only two where the leading organization was a small business.

IMG_0349To complete the deliverables, Arizona State University (ASU), Honeywell Aerospace and LAI International are assisting PADT in technical research with contributions from Prof. Howard Kuhn, a Professor at the University of Pittsburgh and a leading educator in Additive Manufacturing, for workforce and educational outreach.

“While there are several efforts ongoing in developing design and optimization software for lattice structures in additive manufacturing, there has been little progress in developing a robust, validated material model that accurately describes how these structures behave,” said Dhruv Bhate, PhD, senior technologist, PADT and author and principal investigator of the proposal. “We are honored to be chosen to research this important issue and provide the tools to enable entrepreneurs, manufacturers and makers to integrate lattice structures in their designs.”

One of the most definitive benefits of additive manufacturing is the ability to reduce weight while maintaining mechanical performance. A way to achieve this is by adding lattice structures to parts before manufacturing.  The advantages are crucial and can result in increased design flexibility, lower material costs and significant reductions in production time for industries such as aerospace and automotive.

Another aspect of PADT’s winning proposal is the development of a first-of-a-kind online, collaborative living textbook on Additive Manufacturing that seeks to provide comprehensive, up-to-date and structured information in a field where over 50 papers are published worldwide every day.  In addition, the team will develop a training class that addresses manufacturing, testing, theory and simulation as well as how they are combined together to deliver robust predictions of lattice behavior.

“We have identified Additive Manufacturing as a key lever of innovation in our company and recognize lattice structures as an important design capability to reduce mass, improve performance and reduce costs,” said Suraj Rawal, Technical Fellow, Advanced Technology Center at Lockheed Martin Space Systems Company – a leader in implementing Additive Manufacturing. “We also recognize the significance of this work in lattice behavior modeling and prediction as an important contribution to help implement the design, manufacturing, and performance validation of structures in our innovative designs.”

The award of this grant is another example of the leadership role that Arizona is playing in advancing the practical application of Additive Manufacturing, better known as 3D Printing.  PADT’s leadership role in the Arizona Technology Council’s Arizona Additive Manufacturing Committee, support of basic research in the area at ASU, and involvement with educating the next generation of users underscores PADT’s contribution to this effort and furthers the company’s commitment to “Make Innovation Work.”

About Phoenix Analysis and Design Technologies

Phoenix Analysis and Design Technologies, Inc. (PADT) is an engineering product and services company that focuses on helping customers who develop physical products by providing Numerical Simulation, Product Development, and Rapid Prototyping solutions. PADT’s worldwide reputation for technical excellence and experienced staff is based on its proven record of building long term win-win partnerships with vendors and customers. Since its establishment in 1994, companies have relied on PADT because “We Make Innovation Work.” With over 80 employees, PADT services customers from its headquarters at the Arizona State University Research Park in Tempe, Arizona, and from offices in Torrance, California, Littleton, Colorado, Albuquerque, New Mexico, and Murray, Utah, as well as through staff members located around the country. More information on PADT can be found at http://www.PADTINC.com.

Media Contact
Linda Capcara
TechTHiNQ on behalf of PADT
480-229-7090
linda.capcara@techthinq.com
PADT Contact
Dhurv Bhate, PhD
Senior Technologist, PADT
480.813.4884
dhruv.bhate@padtinc.com

IMG_0346

Posted in Additive Manufacturing, News, The Focus | Tagged , , , , , | Leave a comment

Fluid Volume Extraction for CFD

If you have used or are using CFD tools like ANSYS Fluent or ANSYS CFX, then you already know how much of a pain extracting the fluid volume can be from a CAD model.  Whether the extraction fails because of geometry issues, or if you’ve forgotten to create capping surfaces for all your openings it can be quite frustrating when you get the “non-manifold body” error.

We’ve done it the same way for a long time – create some super solid and do a Boolean subtract or try to close everything off and try to use a cavity function to fill in the model.  Both can have headache inducing issues.

CLICK HERE for a PDF that shows how ANSYS SpaceClaim uses a different approach which can make the fluid volume extraction much easier for engineers.

CLICK HERE for a video demo of this as well

 
ANote_VolumeExtractionPic

Posted in The Focus | Tagged , , , , | Leave a comment

PADT’s New Neighbors Break Ground

az-oncology-padt-ground-breakingIf you have visited PADT’s headquarters in Tempe, Arizona you know that we have been next to an empty lot since we moved in.  Today our new neighbors, Arizona Oncology, broke ground on their new East Valley facility.  Although we will miss watching the bunny rabbits and the unobstructed view of Elliot Road, we are happy to have a nice looking facility next door.

az-oncology-building

During the groundbreaking ceremonies we learned that they are the largest Oncology treatment provider in the valley.  I also learned that other recent additions to the ASU Research Park bring the total of employees in the park to 6000.   The addition of Arizona Oncology’s 21,000 sq ft facility will add even more and will be a center for their research and clinical trials as well as a fully integrated care facility.

Welcome to the neighborhood!

 

 

 

Posted in News | Tagged , , , | Leave a comment

Video Blog: Copying Time Steps from a Thermal Transient to a Static Structural Model in ANSYS Mechanical

Transient Thermal to Static Structural Load Transfer, ANSYS MechanicalIn this The Focus Video Blog, Joe Woodward shares a nice little trick he found when answering a tech support question.

When you want to take timesteps from a transient thermal analysis in ANSYS Mechanical and use the results as loads in a series of static simulations, in just a few mouse clicks.

Posted in The Focus | Tagged , , , , , , | Leave a comment

Thermo-Mechanical Reliability of PCBs

PCB designers know that it is critical to design a board for temperature rise, thermal expansion and external structural loads. The difficulty has always been to capture a board’s structural makeup accurately without having an impractical effect on solve time.

CLICK HERE for a PDF that shows how ANSYS solves this challenge in a unique straightforward and effective manner.  And as always feel free to reach out to us at info@padtinc.com if you have any questions.

ANote_Picture

Posted in The Focus | Tagged , , , , , | Leave a comment

Phoenix Business Journal: Why it’s time to stop using regulations as an excuse

pbj-phoenix-business-journal-logoWe have all experienced times where someone uses regulations and rules as an excuse to stop or slow some initiative in a company.  The blog post  “Why it’s time to stop using regulations as an excuse” is a bit of a rant on why this is a bad idea and what we can do to avoid it.

Posted in Publications | Tagged , , , , | Leave a comment

Phoenix Business Journal: ​For every Woz, you need a Jobs

pbj-phoenix-business-journal-logoA successful startup is often the result of how the leadership performs.  In most cases the ideal CEO doesn’t exist, and if you dig down you usually find that the company is being led by two people who compliment each other.  In “For every Woz, you need a Jobs” I look at one of the most famous, and successful such partnering and share some other examples and how to recognize and promote the ideal pairing.

Posted in Publications | Tagged , , , , , | Leave a comment

Be One of the First to Witness 3D Printing Reinvented

 

stratasys-j750-color-3d-printer-head

According to some, the novelty of 3D printing has been wearing off — its mentioned in daily conversations, used on Grey’s Anatomy episodes, incorporated in high school and college classes. Most iPhone-wielding millennials know what it is and how it works. It’s not a “new thing” anymore, right?

Wrong.

Coming to Denver, Salt Lake City, and Phoenix — Phoenix Analysis & Design Technologies (PADT) invites you to be one of the first to meet the Stratasys J750 3D Printer: the latest introduction in the portfolio of PolyJet 3D Printers. The Stratasys J750 is the first-ever full-color, multi-material system, which finally addresses the frustration of designers who want realistic models but have to contend with inconsistent color results and rough finishes from current technology.

Ready to register now? Click here and jump right to it! Or keep reading . . .

Unlike other 3D printers currently in existence, the Stratasys J750 can operate with five different colors: cyan, magenta, yellow, black and white — all of the primary colors in the CMYK color process, just like day-to-day 2D full-color printers. The Stratasys J750 also achieves very fine layer thicknesses, enabling high surface quality and the creation of models and parts with very fine, delicate details, where current 3D printers usually result in relatively rough surface finishes.

What does this mean for those who use 3D J750_Hand2 - High Resolution JPGprinting? The Stratasys J750 not only delivers incredible realism but it’s also the most versatile 3D printer available. Designers and producers can say goodbye to the days of adopting multiple 3D-printing technologies and still resorting afterwards to extensive post-processing, such as sanding, painting and bonding.

Before the Stratasys J750, no single 3D printer could deliver full color, smooth surfaces and multiple materials. Now, however, you can print realistic prototypes, presentation models, Digital ABS injection molds, jigs, fixtures, educational and promotional pieces, production parts – or all of the above, with one system.

The Stratasys J750 even goes one step past versatile, simultaneously being the fastest, simplest, and easiest 3D printer to use. The printer includes several user-requested upgrades, such as server functionality, six-material capacity, and even three print modes that are suitable for different priorities: high speed, high mix and high quality. Additionally, where some 3D printing processes must run in a dedicated facility due to the possible hazard of the materials, chemicals and post-processing steps involved, the Stratasys J750 3D Printer uses a clean, easy process, with no hazardous chemicals to handle.

The Stratasys J750 is one choice among an ever-growing array of 3D printers in the marketplace. But its capabilities and versatility make it more than just a 3D printer; It’s a solution-maker.

In other words, Stratasys has just invented 3D printing. Again. PADT’s 3D Printing team can help you pick the best printer for your job and provide you with one-on-one engineering and prototype support.

If you’re at all interested in technology, you won’t want to miss this printer’s big coming-out day.

Check out times and locations below.

Denver – Monday, July 25th    J750 Shoes 1

Saint Patrick’s Brewing Company

3:00 pm to 6:00 pm

REGISTER

Salt Lake – Wednesday, July 27th

Hilton Salt Lake City Center

3:00 pm to 6:00 pm

REGISTER

Phoenix – Friday, July 29th

ASU SkySong

2:00 pm to 5:00 pm

REGISTER

   

 

Posted in Additive Manufacturing, Events, News | Tagged , , , , | Leave a comment

IoT Innovator: How to turn your IoT idea into a product – Part Two

iotlogoPart 2 is out!  Making a product a smart and connected device requires a lot of planning and an understanding of how Internet of Things devices differ.  In “How to turn your IoT idea into a product” I review the key steps and offer suggestions to make for a more successful design process.  It is published in two parts:

Part 1 and Part 2

Posted in Publications | Tagged , , | Leave a comment

Technology Trends in Fused Deposition Modeling

A few months ago, I did a post on the Technology Trends in Laser-based Metal Additive Manufacturing where I identified 5 key directions that technology was moving in. In this post, I want to do the same, but for a different technology that we also use on a regular basis at PADT: Fused Deposition Modeling (FDM).

1. New Materials with Improved Properties

Many companies have released and are continuously developing composite materials for FDM. Most involve carbon fibers and are discussed in this review. Arevo Labs and Mark Forged are two of many companies that offer composite materials for higher performance, the table below lists their current offerings (CF = Carbon Fiber, CNT = Carbon Nano Tubes). Virtual Foundry are also working on developing a metal rich filament (with about 89% metal, 11% binder polymer), which they claim can be used to make mostly-metal parts for non-functional purposes using existing FDM printers and a heat treatment to vaporize the binder. In short, while ABS and PLA dominate the market, there is a wide range of materials commercially available and this list is growing each year.

Company Composition
Arevo Labs CF, CNT in PAEK
CF in PEEK
Fiberglass in PARA
Mark Forged Micro-CF in Nylon
CF
Fiberglass
Fiberglass (High Strength High Temperature)
Kevlar

2. Improved Properties through Process Enhancements

Even with newer materials, a fundamental problem in FDM is the anisotropy of the parts and the fact that the build direction introduces weak interfaces. However, there are several efforts underway to improve the mechanical properties of FDM parts and this is an exciting space to follow with many approaches to this being taken. Some of these involve explicitly improving the interfacial strength: one of the ways this can be achieved is by pre-heating the base layer (as being investigated by Prof. Keng Hsu at the Arizona State University using lasers and presented at the RAPID 2016 conference). Another approach is being developed by a company called Essentium who combine microwave heating and CNT coated filaments as shown in the video below.

Taking a very different approach, Arevo labs has developed a 6-axis robotic FDM process that allows for conformal deposition of carbon fiber composites and uses an FEA solver to generate optimized toolpaths for improved properties.

3. Faster & Bigger

A lot of press has centered around FDM printers that make bigger parts and at higher deposition rates: one article discusses 4 of these companies that showcased their technologies at an Amsterdam trade show. Among the companies that showcased their technologies at RAPID was 3D Platform, that showed a $27,000 3D printer for FDM with a 1m x 1m x 0.5m printing platform. Some of the key questions for large form factor printers is if and how they deal with geometries needing supports and enabling higher temperature materials. Also, while FDM is well suited among the additive technologies for high throughput, large size prints, it does have competition in this space: Massivit is one company that in the video below shows the printing of a structure 5.6 feet tall in a mere 5 hours using what they call “Gel Dispensed Printing” that reduces the need for supports.

 4. Bioprinting Applications

Micro-extrusion through syringes or specialized nozzles is one of the key ways bioprinting systems operate – but this is technically not “fused” deposition in that it may not involve thermal modification of the material during deposition. However, FDM technology is being used for making scaffolds for bio-printing with synthetic, biodegradable or bio-compatible polymers such as PCL and PLGA. The idea is these scaffolds then form the structure for seeding cells (or in some cases the cells are bioprinted as well onto the scaffold). This technology is growing fast and something we are also investigating at PADT – watch this space for more updates.

5. Material Modeling Improvements

Modeling FDM is an important part of being able to use simulation/analysis to design better processes and parts for functional use. This may not get a lot of press compared to the items above, but is a particular interest of mine and I believe is a critical piece of the puzzle going to true part production with FDM. I have written a few blog posts on the challenges, approaches and a micromechanics view of FDM printed structures and materials. The idea behind all of these is to represent FDM structures mathematically with valid and accurate models so that their behavior can be predicted and designs truly optimized. This space is also growing fast, the most recent paper I have come across in this space is from the University of Wisconsin-Madison that was published May 12, 2016.

Conclusion

Judging by media hype, metal 3D printing and 3D bioprinting are currently dominating the media spotlight – and for good reasons. But FDM has many things going for it: low cost of entry and manufacturing, user-friendliness and high market penetration. And the technology growth has no sign of abating: the most recent, 2016 Wohlers report assesses that there are over 300 manufacturers of FDM printers, though rumor on the street has it that there are over a thousand manufacturers coming up – in China alone. And as the 5 trends above show, FDM has a lot more to offer the world beyond being just the most rapidly scaling technology – and there are people working worldwide on these opportunities. When a process is as simple and elegant as extruding material from a hot nozzle, usable innovations will naturally follow.

Posted in Additive Manufacturing | Tagged , , , , , , , | Leave a comment

Composites Weekly: 3D Printing Advancements in Aerospace, Medical and Automotive – Interview

composites-weekly-logo-1PADT was recently asked to do an interview with Composites Weekly  to talk about what is new in the world of Additive Manufacturing.  Host Jonathan Taylor asked some great questions and we covered a lot of important advances and what to look for in the near future.   Listen here.

Posted in Publications | Tagged , , , , | Leave a comment

Phoenix Business Journal: Don’t forget the business objectives

pbj-phoenix-business-journal-logoIn the day to day process of putting out fires and dealing with minor issues, it is easy for business owners to loose site of the why.  In “Don’t forget the business objectives” I relay some recent thoughts on how to get back to the basics and drive decisions based on clearly communicated objectives.

Posted in Publications | Tagged , , , | Leave a comment