Phoenix Business Journal: Small tech businesses R&D to the rescue

pbj-phoenix-business-journal-logoThis week’s TechFlash focuses on the role that small technical companies play in providing key Research & Development contributions to significant projects.  Inspired by a visit to just such a company in Utah, “Small tech businesses R&D to the rescue” shares our experience in this area.

Posted in Publications | Tagged , , , | Leave a comment

Phoenix Business Journal: PADT wins grant to test viability of 3-D printed materials

pbj-phoenix-business-journal-logoA nice writeup in the Phoenix Business Journal by Hayley Ringle on PADT’s recent win of a America Makes grant to study how unique structures, called Lattice Structures, behave in 3D Printed parts.

“PADT wins grant to test viability of 3-D printed materials

Posted in Additive Manufacturing, Publications | Leave a comment

Investigation Signal Integrity: How to find problems before they find you – Webinar

In the Age of IoT, electronics continue to get smaller, faster, more power efficient, and are integrated into everything around us. Increasingly, companies are incorporating simulation early in the product development process, when the cost of design changes are at their lowest, to meet the challenges presented by Signal Integrity. For this to be effective, simulation tools need to be easy-to-use, compatible with existing work flows, and accurate, all while delivering meaningful results quickly.

If you or your company are designing or using electronics that are:
Critical to revenue, performance, or safety
Getting smaller, faster, or more efficient
Communicating with Gbps data rates
Using several or new connectors
Using long cables or backplanes
Then you could be a victim of Signal Integrity failure!

Join us September 7th, 2016 at 1 pm Pacific Time for this free webinar to discover how ANSYS is delivering intuitive Signal Integrity analysis solutions that can easily import ECAD geometry to compute SYZ parameters, inter-trace coupling, or impedance variations. Learn how ANSYS can help identify Signal Integrity problems and optimize potential solutions faster and cheaper than prototyping multiple iterations.

This webinar will introduce:

  • What products ANSYS provides for Signal Integrity problems
  • How these products can integrate into existing design workflows
  • And how easy these products are to use, even for novice operators

Followed by a Q&A session!

Click Here to register for this event and be sure to add it to your calendar to receive reminders.

Can’t make it? We suggest you register regardless, as our webinars are recorded and sent out along with a PDF of the presentation to our contacts within 24 hours of the presentation finishing.

Posted in Events | Tagged , , , | Leave a comment

There is Plenty of Space in Arizona: PADT Joins Discussion on Channel 8’s Arizona Horizon to Talk about the Space Industry in Arizona

arizona_horizonPADT’s Eric Miller was asked to return to take part in a discussion about the somewhat hidden Space industry in Arizona.  Eric was joined by Kjell Stakkestad, CEO of KinetX Aerospace to answer questions and provide insight into this critical part of Arizona’s high tech industry landscape.

The show features some serious but not-so-fun topics… and the title for the video reflects those.  So ignore the title and see what Eric and Kjell have to say starting at 17:55.

Channel8-2016-1

Posted in News, Publications | Tagged , , , , , , | Leave a comment

Phoenix Business Journal: 5 simple goals for social network marketing

pbj-phoenix-business-journal-logoI feel a little awkward as an engineer giving advice on marketing, but this stuff works for us and there is no reason it can’t work for others.  In “5 simple goals for social network marketing” I go over the goals we have found that helped us build a Social Networking strategy that has proven to help our business. Heck, you are reading this post so we must be doing something right.

Posted in Publications | Tagged , , , | Leave a comment

Phoenix Business Journal: ​Nudging behavior by making things easy

pbj-phoenix-business-journal-logoBusiness is often a process of trying to influence people to do something you want. Study after study shows something simple, the approach that seemed to work over and over again was the simplest: make things easy. In “Nudging behavior by making things easy” I look at this phenomenon and relate it to the business of high technology.

Posted in Publications | Tagged , , , | Leave a comment

Video Tips: Changing Multiple Load Step Settings in ANSYS Mechanical

ANSYS Mechanical allows you to specify settings for load steps one at a time. Most users don’t know that you can change settings for any combination of load steps using the selection of the load step graph. PADT’s Joe Woodward shows you how in this short but informative video.

Posted in The Focus | Tagged , , , , , , | Leave a comment

The Additive Manufacturing Cellular Solids Research Landscape

I am writing this post after visiting the 27th SFF Symposium, a 3-day Additive Manufacturing (AM) conference held annually at the University of Texas at Austin. The SFF Symposium stands apart from other 3D printing conferences held in the US (such as AMUG, RAPID and Inside3D) in the fact that about 90% of the attendees and presenters are from academia. This year had 339 talks in 8 concurrent tracks and 54 posters, with an estimated 470 attendees from 20 countries – an overall 50% increase over the past year.

As one would expect from a predominantly academic conference, the talks were deeper in their content and tracks were more specialized. The track I presented in (Lattice Structures) had a total of 15 talks – 300 minutes of lattice talk, which pretty much made the conference for me!

In this post, I wish to summarize the research landscape in AM cellular solids at a high level: this classification dawned on me as I was listening to the talks over two days and taking in all the different work going on across several universities. My attempt in this post is to wrap my arms around the big picture and show how all these elements are needed to make cellular solids a routine design feature in production AM parts.

Classification of Cellular Solids

First, I feel the need to clarify a technicality that bothered me a wee bit at the conference: I prefer the term “cellular solids” to “lattices” since it is more inclusive of honeycomb and all foam-like structures, following Gibson and Ashby’s 1997 seminal text of the same name. Lattices are generally associated with “open-cell foam” type structures only – but there is a lot of room for honeycomb structures and close-cell foams, each having different advantages and behaviors, which get excluded when we use the term “lattice”.

CellularSolids

Figure 1. Classification of Cellular Solids [Gibson & Ashby, 1997]

The AM Cellular Solids Research Landscape

The 15 papers at the symposium, and indeed all my prior literature reviews and conference visits, suggested to me that all of the work in this space falls into one or more of four categories shown in Figure 2. For each of the four categories (design, analysis, manufacturing & implementation), I have listed below the current list of capabilities (not comprehensive), many of which were discussed in the talks at SFF. Further down I list the current challenges from my point of view, based on what I have learned studying this area over the past year.

AMcellular

Figure 2. AM Cellular Solid Research Landscape

Over the coming weeks I plan to publish a post with more detail on each of the four areas above, summarizing the commercial and academic research that is ongoing (to the best of my knowledge) in each area. For now, I provide below a brief elaboration of each area and highlight some important research questions.

1. Representation (Design)

This deals with how we incorporate cellular structures into our designs for all downstream activities. This involves two aspects: the selection of the specific cellular design (honeycomb or octet truss, for example) and its implementation in the CAD framework. For the former, a key question is: what is the optimum unit cell to select relative to performance requirements, manufacturability and other constraints? The second set of challenges arises from the CAD implementation: how does one allow for rapid iteration with minimal computational expense, how do cellular structures cover the space and merge with the external skin geometry seamlessly?

2. Optimization (Analysis)

Having tools to incorporate cellular designs is not enough – the next question is how to arrange these structures for optimum performance relative to specified requirements? The two most significant challenges in this area are performing the analysis at reasonable computational expense and the development of material models that accurately represent behavior at the cellular structure level, which may be significantly different from the bulk.

3. Realization (Manufacturing)

Manufacturing cellular structures is non-trivial, primarily due to the small size of the connecting members (struts, walls). The dimensions required are often in the order of a few hundred microns and lower, which tends to push the capabilities of the AM equipment under consideration. Additionally, in most cases, the cellular structure needs to be self-supporting and specifically for powder bed fusion, must allow for removal of trapped powder after completion of the build. One way to address this is to develop a map that identifies acceptable sizes of both the connecting members and the pores they enclose. For this, we need robust ways of monitoring quality of AM cellular solids by using in-situ and Non-Destructive techniques to guard against voids and other defects.

4. Application (Implementation)

Cellular solids have a range of potential applications. The well established ones include increasing stiffness-to-weight ratios, energy absorption and thermal performance. More recent applications include improving bone integration for implants and modulating stiffness to match biological distributions of material (biomimicry), as well as a host of ideas involving meta-materials. The key questions here include how do we ensure long term reliability of cellular structures in their use condition? How do we accurately identify and validate these conditions? How do we monitor quality in the field? And how do we ensure the entire life cycle of the product is cost-effective?

So What?

I wrote this post for two reasons: I love to classify information and couldn’t help myself after 5 hours of hearing and thinking about this area. But secondly, I hope it helps give all of us working in this space context to engage and communicate more seamlessly and see how our own work fits in the bigger picture.

A lot of us have a singular passion for the overlapping zone of AM and cellular solids and I can imagine in a few years we may well have a conference, an online journal or a forum of some sort just dedicated to this field – in fact, I’d love to assess interest in such an effort or an equivalent collaborative exercise. If this idea resonates with you, please connect with me on LinkedIn and drop me a note, or send us an email (info@padtinc.com) and cite this blog post so it finds its way to me.

Posted in Additive Manufacturing, The Focus | Tagged , , , , , , , , | Leave a comment

Engineering a Better Pokemon Go Experience

padt-pikachu-1The other day, I saw a post on Engadget about a special case for Pokemon Go users to solve the problem of missing your prized Jigglypuff that you have happened across in the wild (or let’s face it, probably a CP 10 Rattata who is going to break out multiple times before disappearing in a puff of smoke…). The case is designed to give the user access to on screen controls and a nice channel to keep your Pokeball flinging finger straight and true.

Pokemon Go Photo 0

Original Device designed by Jon Clever

As pointed out in the article on Engadget, this case is only useful in the capture screen. This caveat aside, the other issue with the case is that it obscures the screen. Here at PADT, we are fortunate to sell a wide variety of 3D Printing machines, some of which are capable of multiple colors and material durometers. I decided to design my own take on the case from Jon Clever to be prototyped on our Stratasys Connex 3.

Pokemon Go Photo 1

Pokemon Go Photo 2

The case was made with black and clear material. The black material can be combined to produce a custom stiffness, so we made that part soft and rubber like and kept the clear portion rigid. The clear has good optical quality, which could be increased with a layer of “clearcoat.”

Pokemon Go Photo 3

If you have a Stratasys Connex 3 or J750 and an iPhone 6, you can make your own with these STL files, one for the rubber part and one for the clear part.

Iphone 6 Pokemon_Prod_R1-CLEAR

Iphone 6 Pokemon_Prod_R19895

  Pokemon Go stl 1

Other variations and additional possibilities would be made possible with the new Stratasys J750, the first true full color printer that can also mix clear and solid as well as hard and soft materials.  The J750 was just released and highlighted on our recent road show. Visit our blog article on the Scottsdale show to learn more about this incredible printer.

Additional information about PADT and our wide range of 3D Printing offerings here.

Posted in Additive Manufacturing, Fun | Tagged , , , , | Leave a comment

Phoenix Business Journal: ​I’m lucky, I get to work with smart people

pbj-phoenix-business-journal-logoIn “I’m lucky, I get to work with smart people” I take a look at why it is a good thing to be able to work every day with the intelligent employees, partners, vendors, and customers I interact with every day.  Not only is it personally rewarding, it helps make me and PADT better.

Posted in Publications | Tagged , , , | Leave a comment

Press Release: PADT Honored with 2016 Most Admired Leaders Award from the Phoenix Business Journal

PADT-Press-Release-IconWe are pleased to announce that PADT was recognized by the Phoenix Business Journal as one of 2016’s “Most Admired Leaders.” It is a real honor to be recognized by our peers in the business community and reflects on the hard work and contributions of the entire PADT family.  We are especially honored to be included in such a great group of people.

We look forward to joining  everyone for the awards ceremony on September 27, 2016, from 5:30 p.m. – 9:00 p.m. at the Montelucia Resort in Scottsdale, Arizona.

Please find a copy of the press release below.

The official announcement from the Phoenix Business Journal can be found here.

Official copies of the press release can be found in HTML and PDF.

Press Release:

Phoenix Analysis and Design Technologies Honored with 2016 Most Admired Leaders Award from the Phoenix Business Journal

Award based on leadership, dedication and impact on an organization, and the Arizona community

TEMPE, Ariz., August 10, 2016 —  In a special honor that recognizes leadership within its organization and the community, Phoenix Analysis and Design Technologies (PADT) announced today that the company is a recipient of Phoenix Business Journal’s 2016 Most Admired Leaders award.  Eric Miller, principal and co-founder of PADT will be on hand to accept the accolade on September 27, 2016, from 5:30 p.m. – 9:00 p.m. at the Montelucia Resort in Scottsdale, Arizona.

“Expanding from its headquarters in Tempe to offices throughout the Southwest, PADT is a great example of growth and success in Arizona’s entrepreneurial community,” said Jim Goulka, managing director of Arizona Technology Investors and CEO of Lone Mountain Associates, LLC. “The company’s leadership is known for its high level of integrity and is richly deserving of this award.”

PADT is the Southwest’s largest provider of numerical simulation, product development and 3D Printing services and products, but the company’s involvement in the communities in which it serves extends much further. In Arizona, PADT is an active angel investor and serves on the steering committee of Arizona Tech Investors as well as on numerous boards including BioAccel’s Council of Advisors and the President’s STEM Advisory Board of Grand Canyon University. Each year, PADT serves as a judge on the Arizona Commerce Authority’s Innovation Challenge and acts as a mentor to entrepreneurs seeking to start, build and grow their businesses.

“PADT is proud to be a part of Arizona’s community — an entire ecosystem of talented and innovative professionals,” said Eric Miller, Principal of Phoenix Analysis Design Technologies. “We are honored to receive this award, and could not have achieved it without the talented, hard-working, and energetic group of employees we work with every day.”

About Phoenix Analysis and Design Technologies

Phoenix Analysis and Design Technologies, Inc. (PADT) is an engineering product and services company that focuses on helping customers who develop physical products by providing Numerical Simulation, Product Development, and Rapid Prototyping solutions. PADT’s worldwide reputation for technical excellence and experienced staff is based on its proven record of building long term win-win partnerships with vendors and customers. Since its establishment in 1994, companies have relied on PADT because “We Make Innovation Work.” With over 80 employees, PADT services customers from its headquarters at the Arizona State University Research Park in Tempe, Arizona, and from offices in Torrance, California, Littleton, Colorado, Albuquerque, New Mexico, and Murray, Utah, as well as through staff members located around the country. More information on PADT can be found at http://www.PADTINC.com.

 

Media Contact
Linda Capcara
TechTHiNQ on behalf of PADT
480-229-7090
linda.capcara@techthinq.com
PADT Contact
Eric Miller
PADT, Inc.
Principal & Co-Owner
480.813.4884
eric.miller@padtinc.com

 

Posted in News | Tagged , , , , | Leave a comment

ANSYS AIM Webinar: Increase Simulation Realism with Multiphysics

Some product designs require a single physics solution, while others require multiple physics simulations. Electronics cooling, wind loading on a solar array and the thermal performance of a heat exchanger are just a few examples of applications that require multiphysics simulation. Setting up and running multiphysics simulations used to be a challenging task involving the transfer of data between multiple physics solvers. With AIM, multiphysics simulations are easy to perform. AIM provides a consistent workflow and intuitive simulation environment for fluids, structures and electromagnetics that lowers the barrier to entry for multiphysics simulations.

 

Join us for this webinar to discover how AIM makes it easier than ever to solve your multiphysics design challenges in a single, easy-to-use environment. Don’t settle for single physics approximation when multiphysics simulations yield more accurate results with AIM.

This webinar will be held on September 1st from 1:00 – 2:00 pm PT 
Click Here to register for this webinar
AIM Webinar Title Page3
Posted in Events | Tagged , , , | Leave a comment

ANSYS AIM Webinar: Democratize Simulation for Your Design Engineers

Innovative companies are using simulation early in the product development process to improve and optimize product designs. Companies deploying up-front simulation to their product design teams require simulation software that is easy-to-use, provides accurate simulation results and allows customization to enforce best practices. Such design engineering simulation software allows teams to develop and refine design ideas early in the design cycle when the cost of making design changes is still low.

Join us for this webinar to discover how AIM’s intuitive simulation workflow delivers high levels of automation and allows customization to automate engineering simulation best practice. Learn how AIM’s custom applications enable every engineer in your organization to benefit from simulation insights.
This webinar will be held on August 24th from 1:00 pm – 2:00 pm PT

 

Click Here to register for this webinar

AIM Webinar Title Page2

Posted in Events | Tagged , , , | Leave a comment

Introducing Signal Integrity: What is it and how does it impact you? – Webinar

Is your comapny designing or using electronics that are:
  • Critical to revenue, performance, or safety
  • Designed in-house or by 3rd parties
  • Using wireless technology (e.g. Wi-Fi, Bluetooth)
  • Connecting to the cloud or Internet of Things (IoT)
  • Collecting large sets of data
  • Getting smaller, faster, or more efficient
If so then you could potentially be a victim of signal integrity failure!
Join us August 17th, 2016 at 1 pm Pacific Time for a free webinar covering an introduction to Signal Integrity

This is a high-level introduction that will cover:
  • What Signal Integrity is
  • Some of the challenges related to it
  • How to identify those at risk of signal integrity related failure
  • What is being done in response
Followed by a Q&A session afterwards!

Click Here to register for this event and be sure to add it to your calendar to receive reminders.

 

Can’t make it? We suggest you register regardless, as our webinars are recorded and sent out along with a PDF of the presentation to our contacts within 24 hours of the presentation finishing.
Posted in Events | Tagged , , , | Leave a comment

Albuquerque Business First: What you need to consider when designing for the Internet of Things

ABF-Albuquerque_Business_FirstAlmost everyone in the technology industry agrees: the Internet of Things, or IoT, is “the next big thing.” Taking products and connecting them to the internet will change how people live their lives and how companies do their work. In “What you need to consider when designing for the Internet of Things” I explain three suggestions for designing an IoT device.

Posted in Publications | Tagged , | Leave a comment