Major Enhancements in FLOWNEX 2015: Combustors, Importers, and Pipes

FlownexLogo_OfficialSimulation has revolutionized flow and heat transfer dependent systems over the past decades by minimizing costly physical testing and accelerating time to operation around the world. But for many companies, such simulation has largely focused on components and proved to be very time consuming. The technology advancements delivered by Flownex SE now offer a fast, reliable, and accurate total system and subsystem approach to simulation.

FLOWNEX-2015-ICONS

With the release of FLOWNEX 2015, users now have access to advanced combustor system level modeling and they can interact with more system and component simulation tools. This is on top of the already considerable capabilities found in the  tool

Gas Turbine Combustor Heat Transfer Library

During the Preliminary design phase or when considering modifications to existing combustor designs it’s essential to make realistic predictions of  mass flow splits through the  various air admission holes, total pressure losses liner temperatures along the length of the combustor etc.

FLOWNEX-2015-combustor-simulationAlthough very powerful, 3D CFD solutions of combustors are specialized, time consuming processes and therefore are seldom exclusively used during initial sizing of a combustor.

It has been demonstrated that 1D/2D network tools, like Flownex, are capable of predicting with reasonable accuracy the same trends as more detailed numerical models.

The advantage, however, is Flownex’s rapid execution, which allows design modifications and parametric studies to be conducted more simply than ever before. The ease of use and incredible speed of Flownex allows 1000s of preliminary designs to be evaluated under all modes of operation for steady state and dynamic cases. Furthermore, the data obtained from the one-dimensional analysis can be used as boundary conditions for a more detailed three-dimensional model, ultimately supplementing a typical combustor design work flow.

While the simulation of combustor systems was previously possible in the Flownex environment, much of the work of implementing industry standard heat transfer correlations was left to the user through scripting .Now in Flownex SE 2015 it’s all been built in to the tool, while maintaining the flexibility required to model any combustor configuration.

New components include

  • Film convection component
  • Fluid radiation component
  • Jet impingement heat transfer component

To sum up Flownex allows more accurate initial designs, less time is spent on advanced 3D combustor simulations and rig tests, thus reducing development time and cost.

Here is a Video that shows off these features:

Added importers and integration features

AFT Fathom/Impulse/Arrow importer

An importer was added to import the file formats of AFT products. The importer imports all the diameters, loss factors heights, etc. so 90% of the effort is done, and in some cases the networks solve without any modifications.

ROHR2 Integration (pipe stress analysis software)

Flownex has the ability to calculate forces during dynamic simulations. This is very useful in pipe stress analysis for surge or water hammer cases. The ability to import complete geometries from ROHR2 and export results in the format that ROHR2 expects natively has been added. This means a user can perform these combined analysis now with ROHR2 with the minimum of effort.

Fluid Importers

An Importer was added to import liquid and gas properties from CoolProp an open source fluid property library. The existing Aspen/Hysys fluid importer was changed to be a generic Cape-Open compliant importer. This means that fluid properties can now be imported from any Cape-Open compliant server software.

FLOWNEX-2015-turbine-engine

Posted in News, The Focus | Tagged , , , , , , | Leave a comment

Donny Don’t – Thin Sweep Meshing

It’s not a series of articles until there’s at least 3, so here’s the second article in my series of ‘what not to do’ in ANSYS…

Just in case you’re not familiar with thin sweep meshing, here’s an older article that goes over the basics.  Long story short, the thing sweep mesher allows you to use multiple source faces to generate a hex mesh.  It does this by essentially ‘destroying’ the backside topology.  Here’s a dummy board with imprints on the top and bottom surface:

image

If I use the automatic thin sweep mesher, I let the mesher pick which topology to use as the source mesh, and which topology to ‘destroy’.  A picture might make this easier to understand…

image

As you can see, the bottom (right picture) topology now lines up with the mesh, but when I look at the top (left picture) the topology does not line up with the mesh.  If I want to apply boundary conditions to the top of the board (left picture), I will get some very odd behavior:

image

I’ve fixed three sides of the board (why 3?  because I meant to do 4 but missed one and was too lazy to go back and re-run the analysis to explain for some of future deflection plots…sorry, that’s what you get in a free publication) and then applied a pressure to all of those faces.  When I look at the results:

image

Only one spot on the surface has been loaded.  If you go back to the mesh-with-lines picture, you’ll see that there is only a single element face fully contained in the outline of the red lines.  That is the face that gets loaded.  Looking at the input deck, we can see that the only surface effect element (how pressure loads are applied to the underlying solid) is on the one fully-contained element face:

image

If I go back and change my thin sweep to use the top surface topology, things make sense:

image

The top left image shows the thin sweep source definition.  Top right shows the new mesh where the top topology is kept.  Bottom left shows the same boundary conditions.  Bottom right shows the deformation contour.

The same problem occurs if you have contact between the top and bottom of a thin-meshed part.  I’ll switch the model above to a modal analysis and include parts on the top and bottom, with contact regions already imprinted.

image

I’ll leave the thin sweeping meshing control in place and fix three sides of the board (see previous laziness disclosure).  I hit solve and nothing happens:

image

Ah, the dreaded empty contact message.  I’ll set the variable to run just to see what’s going on.  Pro Tip:  If you don’t want to use that variable then you would have to write out the input deck, it will stop writing once it gets to the empty contact set.  Then go back and correlate the contact pair ID with the naming convection in the Connections branch.

The model solves and I get a bunch of 0-Hz (or near-0) modes, indicating rigid body motion:

image

Looking at some of those modes, I can see that the components on one side of my board are not connected:

image

The missing contacts are on the bottom of the board, where there are three surface mounted components (makes sense…I get 18 rigid body modes, or 6 modes per body).  The first ‘correct’ mode is in the bottom right image above, where it’s a flapping motion of a top-mounted component.

So…why don’t we get any contact defined on the bottom surface?  It’s because of the thin meshing.  The faces that were used to define the contact pair were ‘destroyed’ by the meshing:

image

Great…so what’s the take-away from this?  Thin sweep meshing is great, but if  you need to apply loads, constraints, define contact…basically interact with ANYTHING on both sides of the part, you may want to use a different meshing technique.  You’ve got several different options…

  1. Use the tet mesher.  Hey, 2001 called and wants its model size limits back.  The HPC capabilities of ANSYS make it pretty painless to create larger models and use additional cores and GPUs (if you have a solve-capable GPU).  I used to be worried if my model size was above 200k nodes when I first started using ANSYS…now I don’t flinch until it’s over 1.5M
    image
    Look ma, no 0-Hz modes!
  2. Use the multi-zone mesher.  With each release the mutli-zone mesher has gotten better, but for most practical applications you need to manually specify the source faces and possibly define a smaller mesh size in order to handle all the surface blocking features.
    image
    Look pa, no 0-Hz modes!Full disclosure…the multi-zone mesher did an adequate job but didn’t exactly capture all of the details of my contact patches.  It did well enough with a body sizing and manual source definition in order to ‘mostly’ bond each component to the board.
  3. Use the hex-dominant mesher.  Wow, that was hard for me to say.  I’m a bit of a meshing snob, and the hex dominant mesher was immature when it was released way back when.  There were a few instances when it was good, but for the most part, it typically created a good surface mesh and a nightmare volume mesh.  People have been telling me to give it another shot, and for the most part…they’re right.  It’s much, much better.  However, for this model, it has a hard time because of the aspect ratio.  I get the following message when I apply a hex dominant control:

    image
  4. The warning is right…the mesh looks decent on the surface but upon further investigation I get some skewed tets/pyramids.  If I reduce the element size I can significantly reduce the amount of poorly formed elements:image
  5. That’s going on the refrigerator door tonight!
    image
    And…no 0-Hz modes!
  • Lastly…go back to DesignModeler or SpaceClaim and slice/dice the model and use a multi-body part.image
    3 operations, ~2 minutes of work (I was eating at the same time)

    image
    Modify the connection group to search/sort across parts

    image

    That’s a purdy mesh!  (Note:  most of the lower-quality elements, .5 and under, are because there are 2-elements through thickness, reducing the element size or using a single element thru-thickness would fix that right up)

    image
    And…no 0-Hz modes.

Phew…this was a long one.  Sorry about that.  Get me talking about meshing and look what happens.  Again, the take-away from all of this should be that the thin sweeper is a great tool.  Just be aware of its limitations and you’ll be able to avoid some of these ‘odd’ behaviors (it’s not all that odd when you understand what happens behind the scenes).

Posted in The Focus | Tagged , , , , , | Leave a comment

Tech Tips and Videos for Electromechanical Simulation with ANSYS Products

ansys_free_techtipsWe just recieved a new tech tip bundle from ANSYS, Inc on Electromechanical Simulation.  You may remember when we published the Mechanical and Fluids ANSYS tech tips a few weeks ago.  This latest kit continues with information for people making devices and systems that have mechanical and electrical systems.  The focus of the kit is the application of ANSYS Maxwell and Simplorer – Maxwell to model low frequency electromagnetics and Simplorer to model systems.

Here is a link to “The Electromechanical Simulation Productivity Kit ” here. The kit includes:

  • ANSYS Maxwell Automation and Customization Application Brief
  • ANSYS Maxwell Magnetic Field Formulation Application Brief
  • Electric Machine Design Methodology Whitepaper
  • Electromagnetics And Thermal Multiphysics Analysis Webinar
  • Rechargeable Lithium Ion Battery Whitepaper
  • Robust Electric Machine Design – ANSYS Advantage Article

We also have a collection of videos that are a great introduction to the tool set and how to use it. Check out the overview and the video on the washing machine at a minimum.  Even if you have a simple EMAG or do hand calcs, you need to look at Maxwell and Simplorer.

Posted in The Focus | Tagged , , , , , | 1 Comment

Peeling Away the *VMASK

vmask-icon2One way to really unleash the power of APDL is to become familiar, and ultimately fluent, with array parameters. The APDL student will quickly learn that array manipulation involves heavy use of the *V commands, which are used to operate on vectors (single columns of an array). These commands can be used to add two vectors together, find the standard deviation of a column of data, and so on. *V commands consist of what I like to refer to as “action” commands and “setting” commands. The action commands, such as *VOPER, *VFILL, and *VFUN * have their own default behaviors, but these defaults may be overridden by a preceding setting command, such as *VABS, *VLEN, or *VMASK.

*VMASK is one of the most useful, but one of the most difficult to understand, *V command. At its essence it is a setting command that directs the following action command to a “masking” array of true/false values. Only cells corresponding to “true” values in the masking array are considered for the array being operated on in the subsequent action command.

For example, a frequently used application of *VMASK is in the compression of an array—for instance to only include data for selected entities. The array to be compressed would consist of data for all entities, such as element numbers, x-locations for all nodes, etc. The masking array would consist of values indicating the select status for the entities of interest: 1 for selected, –1 for unselected, and 0 for not even in the model to begin with. Only array cells corresponding to a masking array value of 1 would be included in the compression operation, with those corresponding to a value or 0 or –1 being thrown out. Here is a slide from our APDL training class that I hope illustrates things a little better.

image

Take the class or buy the manual (and review it at Amazon, please!)

What we’ve learned so far is that the masking array contains a list of true/false (or not true) values to refer to when performing its vector operation. But actually, it’s much more general than 1, 0, and –1. What *VMASK does is include cells corresponding to all positive numbers in the masking array (not just +1) and exclude cells corresponding to all values less than or equal to zero in the masking array (not just 0 and            -1), which broadens the possibilities for how *VMASK can be handy.

Everything I’ve used *VMASK for up to this point in my career has involved array compression, and I figured I’d be put out on a sweep meshed ice floe into a sea of CFD velocity streamlines (that’s what happens to old CAE engineers; you didn’t know that?) before I came up with anything else. However, I recently ran into a situation where I needed to add up just the positive numbers in an array. I was about to construct an algorithm that would test each individual number in the array to see if it was positive and, if so, add it to the total. It would’ve been cumbersome. Then I came up with a much less cumbersome approach: use the array as it’s own masking array and then perform the addition operation. Let’s look at an example.

Take the following array:

image

The sum of all values in the array is 1.5 whereas the sum of just the positive values is 11.5. What’s the most efficient way to have APDL calculate each?

In the case of summing all values in the array, it’s easy, just simply execute

*VSCFUN,sum_total,SUM,sum_exmpl(1)

which gives you

image

But what about summing just the positive values? That’s easy, just use SUM_EXMPL as its own masking array so that only the positive values are included in the operation.

*VMASK,sum_exmpl(1)

*VSCFUN,sum_pos,SUM,sum_exmpl(1)

image

Boo yeah

Now why was I doing this? I had to create a macro to calculate total nodal loads for an unconstrained component in just the positive direction (to ignore the loads counteracting in the negative direction), and this was my approach. Feel free to download the macro: facelds.mac and try it out yourself.

Posted in The Focus | Tagged , , , , , , | Leave a comment

Video Tips: Topology Optimization with ANSYS and GENESIS

This video will show you how you can optimize a part using Topology Optimization with GENESIS through ANSYS Mechanical with support from ANSYS SpaceClaim

Posted in The Focus | Tagged , , , , , , , | Leave a comment

Product Development for Startups – Presentation at The Startup Lifecycle Lunch & Learn

PADT-Startup-Prod-DevThis Thursday PADT was asked to help participate in a lunch and learn entitled “The Startup Lifecycle.” The event was a joint presentation of the Arizona Technology Council and the Maricopa Corporate College and it was held at CEI’s fantastic facilities.  Given our background, we were asked to talk about Product Development, and specifically on Minimum Viable Products and Lean Manufacturing Principles.

You can download my presentation here, or read on to learn more about the event.

lunchandlearn2There were four presenters.  Hart Schafer the Founder & CEO of TheraSpace and an experienced Adobe guy, among other things, kicked things off with a great discussion on customer validation and discovery.  He pointed out the common mistakes in thinking you know your customers and finding out you were wrong to late. Some great examples were given and he shared some practical ways to really find the Problem-Solution fit.

Next was yours truly, talking about those uncomfortable bits in the middle, where you need to actually design your product, then make it.  I covered the concept of a Minimum Viable Product and how to use product development to come up with one. We also touched on how lean product development can be applied in a startup environment.

Then I dived into lean manufacturing, which is a topic worthy of several Lunch and Learns on its own.  The bottom line was that Startups can effectively apply lean manufacturing to get a better product to market faster, and on budget.  I included some examples and advice on how to implement it.

As mentioned above, you can download my presentation here.

This is a picture of me gesturing widely as I explained how a simple cake doughnut is a Minimum Viable Product and one with frosting and sprinkles was not.  All the time hearing Homer Simpson saying “doooonuts” in my head. presenting2

 

NExt up was Nate Curran, the Entrepreneur-in-Residence at CEI.  He went in to how to commercialize a product.  Another huge topic, but he boiled it down to some basics on commercialization, marketing, and sales.  The last speaker was Russ Yelton, the CEO of Pinnacle Transplant Technologies, a successful startup that was a client at CEI. After we talked about what you should do, he shared the real world and how to scale and grow. The big takeaway from his talk for me was the importance of people and culture when you scale and grow.

After a great Q&A session, we posed for a picture:

lunchandlearn-presenters

As always with events at CEI, the venue was great. And, also as always with AZ Tech Council events, the audience was smart, engaged, and full of their own ideas worth sharing.  Yet another indication of the growing and improving startup ecosystem in Arizona.

Posted in News, PADT Medical, Product Development | Tagged , , , , , | Leave a comment

Two Fantastic Events for Start-Ups: Synapse Med Device Workshop and Star-Up Lifecycle Lunch and Learn

shutterstock_startups1As a further sign of the growth in the Phoenix Start-Up community, there are two high value events for Start-ups that everyone should be aware of, and it doesn’t hurt that PADT is a key participant in both.

Start-Up Strategiesaztc-startup-lunch-and-learn

The first is a lunch and Learn: “The Start-Up Lifecycle – Key Strategies for Success at All Stages of Development.” This event is being presented by the Maricopa Corporate College and AZTC’s Startup + Entrepreneurship Committee and will be held at CEI’s fantastic facilities. Most technology-based start-up companies go through a similar growth lifecycle: validation; product development; commercialization; scale. In this presentation, CEI will discuss the basic principles of business development for companies at all stages. Topics that will be covered include:

  • Lean Startup / Customer Discovery
  • Prototyping and Minimum Viable Product
  • Go-to-Market Strategies
  • Growth Management
  • and more!
Maricopa-Corporate-College-Logo cei_logo

The presenter are experienced entrepreneur’s who will share the lessons they have learned in their own companies and while helping others:

  • Jeff Saville, Executive Director, CEI
  • Nate Curran, Entrepreneur-in-Residence, CEI
  • Hart Shafer, CEO/Founder, Theraspecs & Lean Startup/Innovation coach
  • Eric Miller, Principal, Phoenix Analysis & Design Technologies (PADT)

Learn more here or register here.

The Details:

Location
CEI Gateway
275 N. Gateway Dr
Phoenix, AZ 85034
Date & Time
Thursday June 25, 2015
11:30AM – 1:00PM
Cost
AZTC Members, Free
Non-Members, $15

Medical Device Workshopsynapse-logo1

PADT is also honored to be a participant in SYNAPSE 2015.  This unique event is a 3-day workshop aimed at medical professionals with a product idea.   The event will be an opportunity for them to work with industry professionals, like PADT, to turn those ideas into something real and tangible.  This is being lead by Medicoventures and will also be held at CEI.

synapseworkshop-1At the end of the three days attendees will have a prototype, secure intellectual property, and a vetted business model. They will also have a new network of resources and an invaluable education in the realities of Medical Device Start-Ups.

Other Resource sponsors besides PADT currently include: PipelineDesign; Global Patent Solutions; Knobbe-Martens IP Law; Schmeiser, Olsen & Watts IP Law; VA Angels; DLA Piper, and MedicoLabs.

This event is September 17, 18, and 19th.

This post only summarizes what will happen at the workshop, so please visit the website here to get the full details.

Posted in News, PADT Medical, Product Development | Tagged , , , , , | Leave a comment

AmCon Phoenix 2015: Comments and Presentation Notes

prezo_padt_amcon_phoenix-2015We just finished up our third and final AmCon show of the year at what turned out to be the best show of the three.  The PADT booth was packed during the exhibition time with a wide variety of people asking questions and checking out examples of what PADT and Stratasys can do.  We were able to meet with a lot of our local customers, and even better, were able to get to know a ton of new potential clients.  Some shows are kind of boring and people just don’t get what we do. AmCon shows are the exact opposite. The attendees are smart, informed, and eager to learn more.

As is usual, we had a collection of parts on display. We also had a Geomagic Capture scanner showing off our growing offering of optical scanning solutions.  Here is a picture of Mario at the show.  He definitely photographs the best:

mario_padt_amcon_phoenix-2015In addition to the booth, we were asked to speak on 3D Printing at the event.  Yours truly gave a presentation entitled: “The Practical Application of 3D Printing for Prototyping, Tooling, and Production” that lasted a bit over an hour.

As promised the notes from that presentation can be downloaded here.

We hope to see more of you at future events. If you have questions about 3D Printing and its application please don’t hesitate to contact us.

 

Posted in News, PADT Medical, Product Development, The RP Resource | Tagged , , , , , | Leave a comment

Vibro-Acoustics Analysis in ANSYS Mechanical as Told by a Structures Guy

Vibro-Acoustics-ANSYS-iconWith the introduction of ACT, the ANSYS Workbench editors have gained capabilities and shortcuts at much faster rate than what can be introduced in a development cycle. One of first and most far-reaching extensions is the acoustics. Inevitably I was called on by one of our customers to show them how to do a vibro-acoustics analysis (harmonic with acoustic excitation), which I did. Since the need for this type of analysis is quite broad, I’ll share it here too.

There was an extra level of excitement with this, in that I’m a structures specialist with no prior acoustics experience. So, I did my own self-training on this topic. I have to give tons of credit to Sheldon Imaoka of ANSYS Inc., who took the time to thoroughly answer the questions I had. That being said, this article will be from the standpoint of a structures engineer who’s just recently learned acoustics.

The first thing you’ll need to do is download the Acoustics extension from the Downloads section at the ANSYS Customer Portal and install it in Workbench.

image

It’s at the very top, under ‘A’ for “Acoustics”

One thing you’ll notice when you unzip the Acoustics Extension package is that it contains and entire Acoustics training course. Take advantage of this freebie when learning acoustics analysis. I’ll note that, most of the process outlined in this article comes from the Submarine workshop in the acoustics training course.

Once you’ve installed and turned on the Acoustics extension, insert a Harmonic Analysis system into the project schematic, link to the solid geometry file, and specify the material properties for the solid. You’ll specify the properties for the acoustic region in Mechanical under the appropriate Acoustics extension objects.

image

Rename as you see fit

Assuming you just have the geometry for the solid and not the acoustics domain, create two acoustics regions around the solid. The first region, surrounding the solid, will function as the fluid region itself, through which the acoustic waves travel and interact with the structure. The second region, surrounding the first acoustics region, will function as the Perfectly Matched Layer (PML). The PML essentially acts as the infinite boundary of the system. (If you’re an electromagnetics expert, you already know this and I’m boring you.) You can easily create these domains using the enclosure tool in DesignModeler.

image

Acoustics Regions

Now we’re ready for the analysis. Open up Mechanical. Look at all those buttons on the Acoustics toolbar! Yikes! Fortunately we just need a few of them.

image

Here they are

Insert an Acoustic Body and scope it to the acoustic region surrounding the structural solid. In the Details, enter the density and speed of sound for the fluid. Also set the Acoustic-Structural Coupled Body Options to Coupled With Symmetric Algorithm.

image

image

image

Pay attention to the menu picks, Details, and geometry scoping here and in the rest of the image captures

“Coupled” refers to coupled-field behavior, i.e. the mutual interaction between the structure and the fluid. You’re probably familiar with this. You need that, otherwise the acoustic waves are just bouncing off the structure and the structure isn’t doing anything. Regarding the Symmetric Algorithm: The degrees of freedom for the acoustic system consists of both structural displacements and fluid pressures, giving you an asymmetric stiffness matrix. However, ANSYS has incorporated a symmetrization algorithm to convert the asymmetric stiffness matrix to a symmetric matrix, resulting in half as many equations that need to be solved and thus a faster solution time yadda yadda yadda, so go with that.

Now insert another Acoustic Body, this time scoped to the outer acoustic region (body). This is your Perfectly Matched Layer. Specify fluid density and speed of sound as before. This time, leave the Coupled Body Option as Uncoupled. But, set Perfectly Matched Layers to On.

 imageimage

Apply an Acoustic Pressure of zero to the outer faces of the PML body (Boundary Conditions > Acoustic Pressure). As you may have guessed from the menu pick, this is your acoustics boundary condition.

clip_image020imageimage

Now we’ll apply some acoustic wave excitation to this thing. From the Excitation menu, select Wave Sources (Harmonic). In the Details, set the Excitation Type to either Pressure or Velocity, set the Source Location and specify the excitation pressure or velocity value. In this example, I went with Pressure since that’s what MIL-STD-810 specifies, but this option will be based on your customer requirements. I also assumed an external acoustic source (hence, Outside the Model), but again, that will be based on your particular project. You also need to specify the vector of the wave source, via rotations about the Z and Y axes (f and q). In this case I chose 30 and 60 degrees, respectfully, to make it interesting. Once again, enter the density and speed of sound for the fluid.

clip_image026image

Insert Scattering Controls under the Analysis Settings menu and specify whether the Field Output should be Total or Scattered. Total gives you constant pressure waves that interact with the solid but not each other. Scattered gives you wave that interact and interfere with each other as well as the solid.

imageimage

Set up the Fluid-Structural Interaction boundary condition where the structural faces are “wetted” by the acoustic domain. The FSI Interface is found under the Boundary Conditions menu.

imageimage

Apply structural constraints and specify harmonic analysis settings just like you would with a standard harmonic analysis. Make sure you request Stresses under the Output Controls. Solve the model.

imageimage

Plot your structural results as you would for a typical harmonic analysis. Acoustic Pressure wave results may be found under the Results menu in the Acoustics toolbar. If you used Total field output for the scattering option, you can verify your wave source direction by looking at the Acoustic Pressure Contours. Keep in mind that the contours will be orthogonal to the axis of the sine wave; you may need to put some extra spatial thought into it to fully understand what’s going on.

imageimage

image

Acoustic Pressures: Field Output = Total

image

Acoustic Pressures: Field Output = Scattered

image

Von-Mises Stresses, Max Over Phase: Field Output = Scattered

As you’ll note in the training course, there are a number of design questions that can be answered with acoustics analysis. In this article, I’ve addressed what I thought would be one of the more popular applications of acoustics simulation. If the demand is there, I’ll research and compose more articles on various acoustics applications in the future. For instance, another area I’ve examined is natural frequencies of a structure that’s submerged in a fluid. If there’s another acoustics topic you’d like us to write about, please let us know in the comments.

Posted in The Focus | Tagged , , , , , , , | Leave a comment

Instructions for Installing and Configuring ANSYS MAXWELL and PExprt, Versions 16.X

ANSYS_pexpert_maxwell-1ANSYS PExpert is a fantastic tool for the design, modeling, and analysis of transformers and inductors. Using a combination of classical and finite element analysis (FEA) techniques, ANSYS PExprt determines the core size and shape, air gaps, and winding strategy for a given power converter topology. What we and our customers have found very useful is the ability to then evaluate the magnetic design in ANSYS Maxwell to view such things as flux density in the core and current density distribution in the windings. Powerful stuff.

The first step in implementing ANSYS PExprt with ANSYS Maxwell is installing and configuring them correctly.  We created a step-by-step guild for our ANSYS customers here in the Southwest, and thought others would find it useful.

ansys-maxwell-pexprt-install-image

Download: InstallingMaxwellandPExprt16.pdf

As always, feel free to contact us if you have any questions or need more information. Also, even if you are not in our sales area, please consider using PADT for consulting or training.

 

 

 

 

 

 

 

Posted in The Focus | Tagged , , , , | Leave a comment

Come See PADT at a Conference Near You.

padt-on-the-road-iconSometimes you get that prefect storm where everything happens at once, and these last weeks of May and first weeks of June are shaping up to be our busiest time for conferences and shows this year.  We are going to be all over the place: Newfoundland, Montreal, Long Beach, Houston, and even Phoenix.

So I thought I’d shoot out this quick note just in case some of you who follow this blog are going to be at any of these events. Please make sure you stop by and say hello:

  • May 19-21, 2015:  RAPID Show – Long Beach, California
    We will have a booth and will be talking about 3D Printing as well as Simulation and Design.
  • May 31-June 6, 2015:  ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering (OMAE) – St John’s, Newfoundland, Canada
    Clinton Smith will be presenting a paper with ANSYS, Inc.  on a mesh refinement study we did for a customer on an offshore platform with ANSYS FLUENT
  • June 2-3, 2015: AmCon Phoenix – A Design & Contract Manufacturing Expo – Phoenix, AZ
    This will be our third AmCon this year, this time in our home territory.  The 3D Printing and product development team will be in a booth and I will be doing a talk on “The Practical Application of 3D Printing for Prototyping, Tooling, and Production”
  • June 9, 2015: ANSYS Convergence – Houston, TX
    Clinton Smith will be manning our booth at this event and available to talk about all that PADT does.
  • June 15-19, 2015: ASME Turbo Expo (IGTI) – Montreal Quebec, Canada
    We will just attending this conference, hanging in the Flownex booth, and can probably be found around the ANSYS booth as well.

And don’t forget our Lunch and Learn Road Show: Dealing with Scanned, Repaired, and Legacy Geometry for 3D Printing

Posted in Fun, News | Tagged , , , , , , , , , , | Leave a comment

3D Printing Users Lunched & Learned about Dealing with Scanned, Repaired, and Legacy Geometry

PADT-Geometry-Scanning-PartnersThis Thursday we had the first of seven free seminars on how to deal with geometry created with 3D scanning, how to repair faceted geometry, and how to deal with old CAD geometry.  Don’t panic, we have six more scheduled. Scroll down to see the schedule and register for upcoming versions of this seminar. The inaugural session was held in PADT’s Tempe office and engineers from several departments across the company shared the tools we use in consulting and the lessons we have learned over the years to a pack room full with customers that represented everything from the home inventor to engineers from some of Arizona’s largest aerospace and electronics companies.

badgeometry

As more and more companies do 3D printing we are finding that they struggle with imperfect geometry. Whether it was scanned, from another CAD system, or an STL (3D Printer) file from someone else, when it came time to print parts people were having difficulty getting valid geometry.  So we created a road show to go over the tools we use here to 1) get good scan geometry in the first place, 2) convert scan geometry into something useful, and 3) repair bad STL and CAD files.

Things got kicked off with a presentation on the various ways you can scan 3D geometry.  Our scanning engineer, Ademola, also demonstrated our Geomagic Capture and Steinbichler scanner on some real parts.

padt-scanning-spaceclaim-seminar-tempe-3-2015_05_14

After some food, we moved on to looking at Geomagic Design X.  This is the tool we use to convert our scan data to a fully usable and clean CAD model.  If you have tried to go from scan to CAD without this tool, you know how much work it is.  padt-scanning-spaceclaim-seminar-tempe-2015_05_14

Next we looked that the tool that we use to import, modify, and clean existing geometry: SpaceClaim.  As the presenter Tyler Smith said “No matter the source of geometry, SpaceClaim is the tool to help”

padt-scanning-spaceclaim-seminar-tempe-2-2015_05_14

We finished up with topological optimization. Where we spent most of the event talking about how to get good geometry, in this last presentation we talked about how to make the geometry better by using simulation to optimize the shape of your parts.

padt-scanning-spaceclaim-seminar-tempe-5-2015_05_14

It was a great crowd with the kind of questions you hope for when doing a seminar.  If you are in the Southwest, there is still time to attend one of these lunch & learns being held in other locations. Click on the event you want to register.

 
 
 
 
 
 

Or you can contact PADT directly to learn more about the products and services we covered, which included:

 

Posted in News, The Focus, The RP Resource | Tagged , , , , , , , | Leave a comment

Five Ways CoresOnDemand is Different than the Cloud

CoresOnDemand-Logo-120hIn a recent press release, PADT Inc. announced the launch of CoresOnDemand.com. CoresOnDemand offers CUBE simulation clusters for customers’ ANSYS numerical simulation needs. The clusters are designed from the ground up for running ANSYS numerical simulation codes and are tested and proven to deliver performance results.

CoresOnDemand_CFD-Valve-1

POWERFUL CLUSTER INFRASTRUCTURE

The current clusters available as part of the CoresOnDemand offering are:
1- CoresOnDemand – Paris:

80-Core Intel based cluster. Based on the Intel Xeon E5-2667 v.2 3.30GHz CPU’s, the cluster utilizes a 56Gbps InfiniBand Interconnect and is running a modified version of CentOS 6.6.

CoresOnDemand-Paris-Cluster-Figure

2- CoresOnDemand – Athena:

544-Core AMD based cluster. Based on the AMD Opteron 6380 2.50GHz CPU’s the cluster utilizes a 40Gbps InfiniBand Interconnect and is running a modified version of CentOS 6.6.

CoresOnDemand-Athena-Cluster-Figure

Five Key Differentiators

The things that make CoresOnDemand different than most other cloud computing providers are:

  1. CoresOnDemand is a non-traditional cloud. It is not an instance based cluster. There is no hypervisor or any virtualization layer. Users know what resources are assigned exclusively to them every time. No layers, no emulation, no delay and no surprises.
  2. CoresOnDemand utilizes all of the standard software designed to maximize the full use of hardware features and interconnect. There are no layers between the hardware and operating system.
  3. CoresOnDemand utilizes hardware that is purpose built and benchmarked to maximize performance of simulation tools instead of a general purpose server on caffeine.
  4. CoresOnDemand provides the ability to complete high performance runs on the compute specialized nodes and later performing post processing on a post-processing appropriate node.
  5. CoresOnDemand is a way to lease compute nodes completely and exclusively for the specified duration including software licenses, compute power and hardware interconnect.

CoresOnDemand is backed up by over 20 years of PADT Inc. experience and engineering know-how. Looking at the differentiating features of CoresOnDemand, it becomes apparent that the performance and flexibility of this solution are great advantages for addressing numerical simulation requirements of any type.

To learn more visit www.coresondemand.com or fill out our request form.

Or contact our experts at coresondemand@padtinc.com or 480.813.4884 to schedule a demo or to discuss your requirements.

CoresOnDemand-ANSYS-CUBE-PADT-1

Posted in The Focus | Tagged , , , , , , , | Leave a comment

Press Release: PADT Acquires Stratasys Business from CADCAM Systems

PADT_Logo_Color_100x50At the beginning of this month, CADCAM Systems agreed to sell their Stratasys 3D Printer sales and support business to PADT.  With customers in Colorado, New Mexico, and Utah this acquisition will increase PADT’s presence and investment in those states. This is PADT’s first acquisition in our 21 year history and we are very excited about the whole thing.  If you have worked with us in the past you know we are all about win-win situations.  We feel that this move will be a win for our customers, CADCAM System’s customers, and Stratasys.

We would like to begin by welcoming all of CADCAM System’s customers to the PADT family. Over the coming months we will be working to get to know you and to show you the variety of products and services that PADT offers.  although a few of you are already customers for other things PADT does, we really look forward to meeting the rest of you and understanding how we can help you bring your products to market better and faster.

Secondly, we want to let our existing customers know that this will give us additional customers and revenue that we  will use to fund expanded services in Utah, Colorado, and New Mexico.  Once we have time to get a feel where these new customers are and what they need, we will plan our sales and support staff to better serve everyone. A larger and stronger community will be one of the key ways this will be a win-win for everyone.

You can read more about the acquisition in the press release below or view a PDF version here.

The new customers will grow PADT’s customer base for 3D Printing systems by around 20% to 40%  depending on how you count things. About half of the new customers are in Colorado and the rest are split between Utah and New Mexico; with a few single customers in other states in the west.  Our staff in those states (Littleton, CO, Albuquerque, NM, and Murray, UT) have already started reaching out to the new customers.  As an example of our growing commitment, we recently moved to a new larger suite in the Utah office to make room for a new Application Engineer, more demo machines, and additional space for training and meetings.

We are usually pretty bad about documenting these things for posterity, but fortunately someone remember to snap a picture on their phone during the signing.  From left to right are Ward Rand (PADT Co-Owner), Gloria Ontiveros (CADCAM Co-Owner), John D. Clark (PADT’s Council), and Mario Vargas (PADT’s Sales Manager for 3D Printing):

Official-Signing-CADCAM-Acquisition

 

Customers who have existing support contracts with CADCAM Systems, will continue to be supported by them until those contract expire, including the purchase of their consumables and materials.  When the contracts are up for renewal, they have the option to renew with PADT and we will be the source for their consumables and materials.  Customers who are not on maintenance can contact PADT now for support:

Repair and Maintenance:  480.813.4884 or 3dps@padtinc.com

Those who wish to purchase material and consumables can do so over the phone, via email, or at our online store: padtmarket.com.

Material: 480.813.4884, sales@padtmarket.com, or www.padtmarket.com.

This is an exciting time and we look forward to the growth and mutual success that this acquisition will bring.

Press Release:

PADT Expands 3D Printer Activities with Acquisition of the Stratasys Reselling Business of CADCAM Systems

Strategic move positions PADT as the largest provider of industrial 3D Printing solutions in the Four Corners region.

Tempe, Ariz., May 13, 2015 Phoenix Analysis & Design Technologies, Inc. (PADT) the Southwest’s largest provider of Numerical Simulation, Product Development, and 3D Printing services and products, is pleased to announce the acquisition of the Stratasys Reseller business of CADCAM Systems, based in Boulder Colorado. This move immediately boosts PADT’s existing 3D Printer sales and support customer base by approximately 30%, adding clients in Colorado, Utah, and New Mexico, making PADT the largest distributor of 3D Printing systems to commercial customers in the Four Corners region.

PR-Stratasys_profesional_serires-1

CADCAM Systems, like PADT, has been a leader in 3D Printing sales and support, working with global manufacturer Stratasys to help build usage in the Rocky Mountain States. Throughout the course of its history, CADCAM Systems has built a reputation for outstanding technical ability and customer service. As customers transition to PADT for system support, consumables and future machines, they will receive the same exceptional service they are used to, now from PADT’s offices in Littleton, Colorado, Murray, Utah, and Albuquerque, New Mexico. Additional support will come from PADT’s headquarters in Tempe, Arizona. Customers will have the added advantage of access to PADT’s other products and services, including 3D Printing services, ANSYS simulation software, product development, and simulation services.

“When we heard that CADCAM Systems was interested in selling their Stratasys business, we were immediately interested. Said Rey Chu, co-owner at PADT and a recognized expert in the Additive Manufacturing industry. “We knew they took excellent care of their customers and had strong client bases in Colorado, New Mexico, and Utah, three states that we’ve been growing aggressively in. It was an obvious fit for both companies.”

The acquisition will have no impact on the number of people employed at either company. During the transition, customers who purchased maintenance agreements from CADCAM Systems will be serviced by them until they expire, at which time they have the option to renew with PADT. Some 3D Printing material supplies will be available from CADCAM Systems as well during the transition, with PADT taking over that service in the coming months.

This acquisition was made as part of PADT’s long term strategy to strengthen their position as the premier supplier of mechanical engineering products and services in the Southwest. The company continues to make investments in staff, services offered, and products represented to meet the demands of existing and future customers, continuing to prove a commitment to the company’s motto “We Make Innovation Work.”

To learn more about this exciting expansion visit http://www.padtinc.com/cadcam, email sales@padtinc.com or call 480.813.4884.

About Phoenix Analysis and Design Technologies
Phoenix Analysis and Design Technologies, Inc. (PADT) is an engineering product and services company that focuses on helping customers who develop physical products by providing Numerical Simulation, Product Development, and Rapid Prototyping solutions. PADT’s worldwide reputation for technical excellence and experienced staff is based on its proven record of building long term win-win partnerships with vendors and customers. Since its establishment in 1994, companies have relied on PADT because “We Make Innovation Work.” With over 75 employees, PADT services customers from its headquarters at the Arizona State University Research Park in Tempe, Arizona, and from offices in Littleton, Colorado, Albuquerque, New Mexico, and Murray, Utah, as well as through staff members located around the country. More information on PADT can be found at http://www.PADTINC.com.

# # #

Posted in News, The RP Resource | Tagged , , , , , , | Leave a comment

ANSYS Convergence in Chicago – Smart People Talking about Cool Stuff, and Only a Little Wind

chicago-clouds2Once ANSYS started doing more regional user group meetings, we here at PADT decided to stay out west where we felt comfortable. So we have only attended the California and Texas events in the past.  This year we decided to venture further East and go to the Convergence meeting in Chicago.  I have to say it was a great experience, different then the Santa Clara meeting a few weeks ago.

Being from Arizona, I was a bit worried about the weather. It was appropriately windy, and unfortunately overcast with low clouds so my pictures of the famous skyline was a bit stunted.

What was so great was that the same type of smart people who get simulation were there, the products they work on were very different.  From train locomotives to exercise equipment to automotive electronics, we were exposed to a variety of very unique and very cool applications.  And as usual, the people from ANSYS, Inc. had a lot to contribute and show off that was new or coming in various programs.

The event started off with a great presentation from Sin Min Yap, VP of Marketing at ANSYS, on how simulation can be used to turn good ideas in to great products.  Some great customer stories were shared and it really set a foundation as to why we do this thing called modeling and simulation.

However, the customer keynote address stole the show. It was from Jim Kennedy at Mars Corporate Innovation. No, there is no corporation on Mars (outside of SciFi movies). This is the Mars Corporation that is famous for their candy (M&M’s!!!!) and also does several well known pet foods, Wrigley chewing gum, a bunch of food brands, and drinks.  His talk was how the manufacturing of food can be improved with simulation.  Here is a bad picture of a great slide showing the modeling in FLUENT of their gum Kneaders.

gum-kneeders

And here is a model of forming Skittles:

skittles-forming

For an engineer, it doesn’t get much cooler than that. He had other great examples, and tied it all together to show how they do some very sophisticated simulation to improve their efficiency, product quality while reducing cost and minimizing their energy footprint.

Several of us sitting in the back were just amazed at the complex material models they must be using.  Candy, chocolate, gums – much more difficult than stainless steel for sure!

The next speaker talked about the Internet of Things (IoT) and the Industrial Internet, which is the IoT applied to the machines that are used to make things, and to monitor products in the field.  My key takeaway is that those of us who are responsible for designing new products have to start figuring out how we are going to make it all work. Simulation can be used to solve difficult packaging issues with batteries, antenna, and sensors the will soon be in most products we develop.  And ANSYS has the tools to do the simulation.

ANSYS also talked about their new ANSYS Enterprise Cloud solution. A very impressive effort to do a true Cloud solution for simulation… not just call time-sharing “cloud computing.”  Working with Amazon they have introduced a truly scalable, interactive, secure, and robust solution that sets the industry standard for Cloud based simulation. We also got a chance to play with it, because ANSYS’s Judd Kaiser was in the booth next to me.  It really is easy to implement and use.  I took a picture when Judd was not looking:

ansys_enterprise_cloud_demo

Renee Demay, the head of the ANSYS Customer Excellence team explained how ANSYS, Inc. is delivering a new more effective solution for customer support and services – focused as the name says on giving the customer and excellent experience.

And then the morning session finished on my favorite combined topic: Simulation and 3D Printing.  John Graham from ANSYS SpaceClaim gave a great talk on how SpaceClaim can be used to improve 3D Printing and serve as the bridge between scanning, 3D Printing, and simulation.

Here he is talking about the repair functionality in the tool. Something we use here at PADT all the time:

spaceclaim-stl-repair

That finished up the morning session, which was followed by a nice lunch where we were able to interact with people a lot. Several of you who read this blog stopped by to say hi. That really made my day.

PADT  had a booth:

IMG_6361

Several of our fiends and partners were also there, so I did a selfie with them all to say hi.  First stop was our good friends and fellow ANSYS Channel Partners SimuTech. They have a local office in Chicago:

IMG_6373

Right across from them were a team from VR&D, our favorite topological optimization tool:

IMG_6374

And NICE was there as well, showing of the remote visualization tool DCV that we use for CoresOnDemand.com and ANSYS uses in EKM and the ANSYS Enterprise Cloud:IMG_6379

The afternoon sessions were great. Lots of ANSYS and customer applications that showed the breadth and depth of usage of ANSYS products in the Midwest.

Then we had a reception, which for a Friday evening where everyone had a big commute ahead of them, was well attended.  Wine was drunk, HFSS models were shared, and the best strategy for disk array RAID configuration was debated… among other less interesting things.

A great trip, where I caught up with some old friends and made some new ones. I  look forward to exploring further east in the future!

And at least one of us will be in Houston, so if you are going make sure you stop by and say hi!

Personal Note – A Saturday of Frank Lloyd Wright

So instead of trying to red eye it back to Phoenix, I spent the night and on Saturday I went on a pilgrimage I’ve wanted to do some time: a visit to some of Frank Lloyd Wrights early creations. I won’t bore you all with my ineloquent ramblings on what a genius he was. Let me just say it was better than I expected.  His studio in his first home was nothing short of amazing (there I go, rambling…) anyhow, here are few shots I took from the outside. I didn’t take any inside pictures because: 1) I take crappy pictures, and 2) I wanted to look and explore instead of take selfies.

The first studio.

flw3

The house attached that the studio is attached to.  You should see the playroom on the top floor. Here is a link to a great blog posting about the house.

flw4

I then went to the Unity Temple which is just down the street. It was covered in scaffolding, but the inside, although worn and in need of repair, was so amazing:

flw2

Then I drove to the University of Chicago to see my second favorite Wright structure (Falling Water being my fav, duh), the Robbie House.  It did not disappoint:flw-1

A day well spent.

flw5

 

 

 

 

 

 

 

Posted in The Focus | Tagged , , , , | Leave a comment